{"title":"通过新肽实现分子合作","authors":"Izabela K Sibilska-Kaminski, John Yin","doi":"10.1007/s11084-021-09603-6","DOIUrl":null,"url":null,"abstract":"<p><p>Theoretical models of the chemical origins of life depend on self-replication or autocatalysis, processes that arise from molecular interactions, recruitment, and cooperation. Such models often lack details about the molecules and reactions involved, giving little guidance to those seeking to detect signs of interaction, recruitment, or cooperation in the laboratory. Here, we develop minimal mathematical models of reactions involving specific chemical entities: amino acids and their condensation reactions to form de novo peptides. Reactions between two amino acids form a dipeptide product, which enriches linearly in time; subsequent recruitment of such products to form longer peptides exhibit super-linear growth. Such recruitment can be reciprocated: a peptide contributes to and benefits from the formation of one or more other peptides; in this manner, peptides can cooperate and thereby exhibit autocatalytic or exponential growth. We have started to test these predictions by quantitative analysis of de novo peptide synthesis conducted by wet-dry cycling of a five-amino acid mixture over 21 days. Using high-performance liquid chromatography, we tracked abundance changes for >60 unique peptide species. Some species were highly transient, with the emergence of up to 17 new species and the extinction of nine species between samplings, while other species persisted across many cycles. Of the persisting species, most exhibited super-linear growth, a sign of recruitment anticipated by our models. This work shows how mathematical modeling and quantitative analysis of kinetic data can guide the search for prebiotic chemistries that have the potential to cooperate and replicate.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":"51 1","pages":"71-82"},"PeriodicalIF":1.9000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212187/pdf/nihms-1708470.pdf","citationCount":"0","resultStr":"{\"title\":\"Toward Molecular Cooperation by De Novo Peptides.\",\"authors\":\"Izabela K Sibilska-Kaminski, John Yin\",\"doi\":\"10.1007/s11084-021-09603-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Theoretical models of the chemical origins of life depend on self-replication or autocatalysis, processes that arise from molecular interactions, recruitment, and cooperation. Such models often lack details about the molecules and reactions involved, giving little guidance to those seeking to detect signs of interaction, recruitment, or cooperation in the laboratory. Here, we develop minimal mathematical models of reactions involving specific chemical entities: amino acids and their condensation reactions to form de novo peptides. Reactions between two amino acids form a dipeptide product, which enriches linearly in time; subsequent recruitment of such products to form longer peptides exhibit super-linear growth. Such recruitment can be reciprocated: a peptide contributes to and benefits from the formation of one or more other peptides; in this manner, peptides can cooperate and thereby exhibit autocatalytic or exponential growth. We have started to test these predictions by quantitative analysis of de novo peptide synthesis conducted by wet-dry cycling of a five-amino acid mixture over 21 days. Using high-performance liquid chromatography, we tracked abundance changes for >60 unique peptide species. Some species were highly transient, with the emergence of up to 17 new species and the extinction of nine species between samplings, while other species persisted across many cycles. Of the persisting species, most exhibited super-linear growth, a sign of recruitment anticipated by our models. This work shows how mathematical modeling and quantitative analysis of kinetic data can guide the search for prebiotic chemistries that have the potential to cooperate and replicate.</p>\",\"PeriodicalId\":19614,\"journal\":{\"name\":\"Origins of Life and Evolution of Biospheres\",\"volume\":\"51 1\",\"pages\":\"71-82\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212187/pdf/nihms-1708470.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Origins of Life and Evolution of Biospheres\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11084-021-09603-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-021-09603-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Theoretical models of the chemical origins of life depend on self-replication or autocatalysis, processes that arise from molecular interactions, recruitment, and cooperation. Such models often lack details about the molecules and reactions involved, giving little guidance to those seeking to detect signs of interaction, recruitment, or cooperation in the laboratory. Here, we develop minimal mathematical models of reactions involving specific chemical entities: amino acids and their condensation reactions to form de novo peptides. Reactions between two amino acids form a dipeptide product, which enriches linearly in time; subsequent recruitment of such products to form longer peptides exhibit super-linear growth. Such recruitment can be reciprocated: a peptide contributes to and benefits from the formation of one or more other peptides; in this manner, peptides can cooperate and thereby exhibit autocatalytic or exponential growth. We have started to test these predictions by quantitative analysis of de novo peptide synthesis conducted by wet-dry cycling of a five-amino acid mixture over 21 days. Using high-performance liquid chromatography, we tracked abundance changes for >60 unique peptide species. Some species were highly transient, with the emergence of up to 17 new species and the extinction of nine species between samplings, while other species persisted across many cycles. Of the persisting species, most exhibited super-linear growth, a sign of recruitment anticipated by our models. This work shows how mathematical modeling and quantitative analysis of kinetic data can guide the search for prebiotic chemistries that have the potential to cooperate and replicate.
期刊介绍:
The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.