Claire de Curraize , Eliane Siebor , Catherine Neuwirth
{"title":"与沙门氏菌基因组岛1相关的基因组岛;trmE中的整合可移动元件被A/C质粒在trans中动员","authors":"Claire de Curraize , Eliane Siebor , Catherine Neuwirth","doi":"10.1016/j.plasmid.2021.102565","DOIUrl":null,"url":null,"abstract":"<div><p><em>Salmonella</em> genomic island 1 (SGI1), an integrative mobilisable element (IME), was first reported 20 years ago, in the multidrug resistant <em>Salmonella</em> Typhimurium DT104 clone. Since this first report, many variants and relatives have been found in <em>Salmonella enterica</em> and <em>Proteus mirabilis.</em> Thanks to whole genome sequencing, more and more complete sequences of SGI1-related elements (SGI1-REs) have been reported in these last few years among Gammaproteobacteria. Here, the genetic organisation and main features common to SGI1-REs are summarised to help to classify them. Their integrases belong to the tyrosine-recombinase family and target the 3′-end of the <em>trmE</em> gene. They share the same genetic organisation (integrase and excisionase genes, replicase module, SgaCD-like transcriptional activator genes, <em>traN</em>, <em>traG</em>, <em>mpsB/mpsA</em> genes) and they harbour AcaCD binding sites promoting their excision, replication and mobilisation in presence of A/C plasmid. SGI1-REs are mosaic structures suggesting that recombination events occurred between them. Most of them harbour a multiple antibiotic resistance (MAR) region and the plasticity of their MAR region show that SGI1-REs play a key role in antibiotic resistance and might help multiple antibiotic resistant bacteria to adapt to their environment. This might explain the emergence of clones with SGI1-REs.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102565"},"PeriodicalIF":1.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102565","citationCount":"10","resultStr":"{\"title\":\"Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids\",\"authors\":\"Claire de Curraize , Eliane Siebor , Catherine Neuwirth\",\"doi\":\"10.1016/j.plasmid.2021.102565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Salmonella</em> genomic island 1 (SGI1), an integrative mobilisable element (IME), was first reported 20 years ago, in the multidrug resistant <em>Salmonella</em> Typhimurium DT104 clone. Since this first report, many variants and relatives have been found in <em>Salmonella enterica</em> and <em>Proteus mirabilis.</em> Thanks to whole genome sequencing, more and more complete sequences of SGI1-related elements (SGI1-REs) have been reported in these last few years among Gammaproteobacteria. Here, the genetic organisation and main features common to SGI1-REs are summarised to help to classify them. Their integrases belong to the tyrosine-recombinase family and target the 3′-end of the <em>trmE</em> gene. They share the same genetic organisation (integrase and excisionase genes, replicase module, SgaCD-like transcriptional activator genes, <em>traN</em>, <em>traG</em>, <em>mpsB/mpsA</em> genes) and they harbour AcaCD binding sites promoting their excision, replication and mobilisation in presence of A/C plasmid. SGI1-REs are mosaic structures suggesting that recombination events occurred between them. Most of them harbour a multiple antibiotic resistance (MAR) region and the plasticity of their MAR region show that SGI1-REs play a key role in antibiotic resistance and might help multiple antibiotic resistant bacteria to adapt to their environment. This might explain the emergence of clones with SGI1-REs.</p></div>\",\"PeriodicalId\":49689,\"journal\":{\"name\":\"Plasmid\",\"volume\":\"114 \",\"pages\":\"Article 102565\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102565\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmid\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147619X21000123\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmid","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147619X21000123","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids
Salmonella genomic island 1 (SGI1), an integrative mobilisable element (IME), was first reported 20 years ago, in the multidrug resistant Salmonella Typhimurium DT104 clone. Since this first report, many variants and relatives have been found in Salmonella enterica and Proteus mirabilis. Thanks to whole genome sequencing, more and more complete sequences of SGI1-related elements (SGI1-REs) have been reported in these last few years among Gammaproteobacteria. Here, the genetic organisation and main features common to SGI1-REs are summarised to help to classify them. Their integrases belong to the tyrosine-recombinase family and target the 3′-end of the trmE gene. They share the same genetic organisation (integrase and excisionase genes, replicase module, SgaCD-like transcriptional activator genes, traN, traG, mpsB/mpsA genes) and they harbour AcaCD binding sites promoting their excision, replication and mobilisation in presence of A/C plasmid. SGI1-REs are mosaic structures suggesting that recombination events occurred between them. Most of them harbour a multiple antibiotic resistance (MAR) region and the plasticity of their MAR region show that SGI1-REs play a key role in antibiotic resistance and might help multiple antibiotic resistant bacteria to adapt to their environment. This might explain the emergence of clones with SGI1-REs.
期刊介绍:
Plasmid publishes original research on genetic elements in all kingdoms of life with emphasis on maintenance, transmission and evolution of extrachromosomal elements. Objects of interest include plasmids, bacteriophages, mobile genetic elements, organelle DNA, and genomic and pathogenicity islands.