抗CGRP单克隆抗体能否为2型糖尿病提供新的治疗选择?

Celine E Riera
{"title":"抗CGRP单克隆抗体能否为2型糖尿病提供新的治疗选择?","authors":"Celine E Riera","doi":"10.33696/diabetes.1.028","DOIUrl":null,"url":null,"abstract":"The neuropeptide Calcitonin Gene-Related Peptide (CGRP) is a 37-amino acid peptide, with a wide-range of biological activities including vasodilation [1], neurogenic inflammation [1], immune function [2] and hypertension [3]. In addition to these various roles, it has also been heavily implicated in metabolic disease, with roles in feeding, energy dissipation processes and pancreatic β-cell insulin secretion. One of the most striking effects of delivering CGRP either by intraperitoneal or intracranial routes is an acute reduction of food intake and energy expenditure [4–7]. This important function has been linked to activation of brain parabrachial neurons which contain CGRP and acutely suppress feeding to cause starvation [8]. Remarkably, CGRP is present in both central and peripheral nervous systems, where it is likely to have different biological activities. Krahn et al. noted that intracranial CGRP delivery was more potent at inhibiting feeding compared to intraperitoneal route [5]. Moreover, whole-body deletion of mouse CGRPα increased food intake, but also led to a surprising resistance to weight gain on diet-induced obesity [9], suggesting that complementary effects on energy expenditure were being recruited to dissipate the additional calories ingested. These data highlight the need to scrutinize central and peripheral specificity of the CGRP peptide in energy balance.","PeriodicalId":73706,"journal":{"name":"Journal of diabetes and clinical research","volume":"2 4","pages":"114-118"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889048/pdf/","citationCount":"1","resultStr":"{\"title\":\"Can Monoclonal Antibodies against CGRP Offer New Treatment Options for Type 2 Diabetes?\",\"authors\":\"Celine E Riera\",\"doi\":\"10.33696/diabetes.1.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neuropeptide Calcitonin Gene-Related Peptide (CGRP) is a 37-amino acid peptide, with a wide-range of biological activities including vasodilation [1], neurogenic inflammation [1], immune function [2] and hypertension [3]. In addition to these various roles, it has also been heavily implicated in metabolic disease, with roles in feeding, energy dissipation processes and pancreatic β-cell insulin secretion. One of the most striking effects of delivering CGRP either by intraperitoneal or intracranial routes is an acute reduction of food intake and energy expenditure [4–7]. This important function has been linked to activation of brain parabrachial neurons which contain CGRP and acutely suppress feeding to cause starvation [8]. Remarkably, CGRP is present in both central and peripheral nervous systems, where it is likely to have different biological activities. Krahn et al. noted that intracranial CGRP delivery was more potent at inhibiting feeding compared to intraperitoneal route [5]. Moreover, whole-body deletion of mouse CGRPα increased food intake, but also led to a surprising resistance to weight gain on diet-induced obesity [9], suggesting that complementary effects on energy expenditure were being recruited to dissipate the additional calories ingested. These data highlight the need to scrutinize central and peripheral specificity of the CGRP peptide in energy balance.\",\"PeriodicalId\":73706,\"journal\":{\"name\":\"Journal of diabetes and clinical research\",\"volume\":\"2 4\",\"pages\":\"114-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889048/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of diabetes and clinical research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33696/diabetes.1.028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of diabetes and clinical research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/diabetes.1.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can Monoclonal Antibodies against CGRP Offer New Treatment Options for Type 2 Diabetes?
The neuropeptide Calcitonin Gene-Related Peptide (CGRP) is a 37-amino acid peptide, with a wide-range of biological activities including vasodilation [1], neurogenic inflammation [1], immune function [2] and hypertension [3]. In addition to these various roles, it has also been heavily implicated in metabolic disease, with roles in feeding, energy dissipation processes and pancreatic β-cell insulin secretion. One of the most striking effects of delivering CGRP either by intraperitoneal or intracranial routes is an acute reduction of food intake and energy expenditure [4–7]. This important function has been linked to activation of brain parabrachial neurons which contain CGRP and acutely suppress feeding to cause starvation [8]. Remarkably, CGRP is present in both central and peripheral nervous systems, where it is likely to have different biological activities. Krahn et al. noted that intracranial CGRP delivery was more potent at inhibiting feeding compared to intraperitoneal route [5]. Moreover, whole-body deletion of mouse CGRPα increased food intake, but also led to a surprising resistance to weight gain on diet-induced obesity [9], suggesting that complementary effects on energy expenditure were being recruited to dissipate the additional calories ingested. These data highlight the need to scrutinize central and peripheral specificity of the CGRP peptide in energy balance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ephrin B1 Regulates Inflammatory Pathways in Retinal Müller Cells. A Commentary on “Better TIR, HbA1c, and Less Hypoglycemia in Closed-loop Insulin System in Patients with Type 1 Diabetes: A Meta-analysis” Elevated Opioid Growth Factor Alters the Limbus in Type 1 Diabetic Rats. A Customized Artificial Pancreas System with Neural Network based Model Predictive Control for Type 1 Diabetic Rats Introducing m-Health and Digital Diabetes Apps in Clinical Pharmacy Education in Germany
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1