生物分子系统工程:通过乳糖抑制因子拓扑释放工程变构的潜力。

IF 10.4 1区 生物学 Q1 BIOPHYSICS Annual Review of Biophysics Pub Date : 2021-05-06 Epub Date: 2021-02-19 DOI:10.1146/annurev-biophys-090820-101708
Thomas M Groseclose, Ronald E Rondon, Ashley N Hersey, Prasaad T Milner, Dowan Kim, Fumin Zhang, Matthew J Realff, Corey J Wilson
{"title":"生物分子系统工程:通过乳糖抑制因子拓扑释放工程变构的潜力。","authors":"Thomas M Groseclose,&nbsp;Ronald E Rondon,&nbsp;Ashley N Hersey,&nbsp;Prasaad T Milner,&nbsp;Dowan Kim,&nbsp;Fumin Zhang,&nbsp;Matthew J Realff,&nbsp;Corey J Wilson","doi":"10.1146/annurev-biophys-090820-101708","DOIUrl":null,"url":null,"abstract":"<p><p>Allosteric function is a critical component of many of the parts used to construct gene networks throughout synthetic biology. In this review, we discuss an emerging field of research and education, biomolecular systems engineering, that expands on the synthetic biology edifice-integrating workflows and strategies from protein engineering, chemical engineering, electrical engineering, and computer science principles. We focus on the role of engineered allosteric communication as it relates to transcriptional gene regulators-i.e., transcription factors and corresponding unit operations. In this review, we (<i>a</i>) explore allosteric communication in the lactose repressor LacI topology, (<i>b</i>) demonstrate how to leverage this understanding of allostery in the LacI system to engineer non-natural BUFFER and NOT logical operations, (<i>c</i>) illustrate how engineering workflows can be used to confer alternate allosteric functions in disparate systems that share the LacI topology, and (<i>d</i>) demonstrate how fundamental unit operations can be directed to form combinational logical operations.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Biomolecular Systems Engineering: Unlocking the Potential of Engineered Allostery via the Lactose Repressor Topology.\",\"authors\":\"Thomas M Groseclose,&nbsp;Ronald E Rondon,&nbsp;Ashley N Hersey,&nbsp;Prasaad T Milner,&nbsp;Dowan Kim,&nbsp;Fumin Zhang,&nbsp;Matthew J Realff,&nbsp;Corey J Wilson\",\"doi\":\"10.1146/annurev-biophys-090820-101708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Allosteric function is a critical component of many of the parts used to construct gene networks throughout synthetic biology. In this review, we discuss an emerging field of research and education, biomolecular systems engineering, that expands on the synthetic biology edifice-integrating workflows and strategies from protein engineering, chemical engineering, electrical engineering, and computer science principles. We focus on the role of engineered allosteric communication as it relates to transcriptional gene regulators-i.e., transcription factors and corresponding unit operations. In this review, we (<i>a</i>) explore allosteric communication in the lactose repressor LacI topology, (<i>b</i>) demonstrate how to leverage this understanding of allostery in the LacI system to engineer non-natural BUFFER and NOT logical operations, (<i>c</i>) illustrate how engineering workflows can be used to confer alternate allosteric functions in disparate systems that share the LacI topology, and (<i>d</i>) demonstrate how fundamental unit operations can be directed to form combinational logical operations.</p>\",\"PeriodicalId\":50756,\"journal\":{\"name\":\"Annual Review of Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biophys-090820-101708\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-090820-101708","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 6

摘要

变构功能是整个合成生物学中用于构建基因网络的许多部分的关键组成部分。在这篇综述中,我们讨论了一个新兴的研究和教育领域,生物分子系统工程,它扩展了合成生物学大厦-整合工作流程和策略,从蛋白质工程,化学工程,电气工程和计算机科学原理。我们关注工程变构通讯的作用,因为它与转录基因调控因子有关。、转录因子及相应的单元操作。在这篇综述中,我们(a)探索乳糖抑制因子LacI拓扑中的变构通信,(b)演示如何利用LacI系统中对变构的理解来设计非自然缓冲和非逻辑操作,(c)说明工程工作流程如何用于在共享LacI拓扑的不同系统中赋予替代变构功能,以及(d)演示如何指导基本单元操作形成组合逻辑操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomolecular Systems Engineering: Unlocking the Potential of Engineered Allostery via the Lactose Repressor Topology.

Allosteric function is a critical component of many of the parts used to construct gene networks throughout synthetic biology. In this review, we discuss an emerging field of research and education, biomolecular systems engineering, that expands on the synthetic biology edifice-integrating workflows and strategies from protein engineering, chemical engineering, electrical engineering, and computer science principles. We focus on the role of engineered allosteric communication as it relates to transcriptional gene regulators-i.e., transcription factors and corresponding unit operations. In this review, we (a) explore allosteric communication in the lactose repressor LacI topology, (b) demonstrate how to leverage this understanding of allostery in the LacI system to engineer non-natural BUFFER and NOT logical operations, (c) illustrate how engineering workflows can be used to confer alternate allosteric functions in disparate systems that share the LacI topology, and (d) demonstrate how fundamental unit operations can be directed to form combinational logical operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
期刊最新文献
Biophysical Principles Emerging from Experiments on Protein-Protein Association and Aggregation. Ancestral Reconstruction and the Evolution of Protein Energy Landscapes. The Effects of Codon Usage on Protein Structure and Folding. Translation Dynamics of Single mRNAs in Live Cells. Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1