{"title":"scSorter:根据标记基因将细胞归入已知的细胞类型。","authors":"Hongyu Guo, Jun Li","doi":"10.1186/s13059-021-02281-7","DOIUrl":null,"url":null,"abstract":"<p><p>On single-cell RNA-sequencing data, we consider the problem of assigning cells to known cell types, assuming that the identities of cell-type-specific marker genes are given but their exact expression levels are unavailable, that is, without using a reference dataset. Based on an observation that the expected over-expression of marker genes is often absent in a nonnegligible proportion of cells, we develop a method called scSorter. scSorter allows marker genes to express at a low level and borrows information from the expression of non-marker genes. On both simulated and real data, scSorter shows much higher power compared to existing methods.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"69"},"PeriodicalIF":12.3000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898451/pdf/","citationCount":"0","resultStr":"{\"title\":\"scSorter: assigning cells to known cell types according to marker genes.\",\"authors\":\"Hongyu Guo, Jun Li\",\"doi\":\"10.1186/s13059-021-02281-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On single-cell RNA-sequencing data, we consider the problem of assigning cells to known cell types, assuming that the identities of cell-type-specific marker genes are given but their exact expression levels are unavailable, that is, without using a reference dataset. Based on an observation that the expected over-expression of marker genes is often absent in a nonnegligible proportion of cells, we develop a method called scSorter. scSorter allows marker genes to express at a low level and borrows information from the expression of non-marker genes. On both simulated and real data, scSorter shows much higher power compared to existing methods.</p>\",\"PeriodicalId\":48922,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"22 1\",\"pages\":\"69\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898451/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-021-02281-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-021-02281-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
scSorter: assigning cells to known cell types according to marker genes.
On single-cell RNA-sequencing data, we consider the problem of assigning cells to known cell types, assuming that the identities of cell-type-specific marker genes are given but their exact expression levels are unavailable, that is, without using a reference dataset. Based on an observation that the expected over-expression of marker genes is often absent in a nonnegligible proportion of cells, we develop a method called scSorter. scSorter allows marker genes to express at a low level and borrows information from the expression of non-marker genes. On both simulated and real data, scSorter shows much higher power compared to existing methods.
期刊介绍:
Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields.
With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category.
In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.