Judit Mercédesz Pomothy, Katrina Gatt, Ákos Jerzsele, Erzsébet Pászti Gere
{"title":"槲皮素对暴露于脱氧雪腐酚的猪肠上皮细胞系的影响。","authors":"Judit Mercédesz Pomothy, Katrina Gatt, Ákos Jerzsele, Erzsébet Pászti Gere","doi":"10.1556/004.2020.00052","DOIUrl":null,"url":null,"abstract":"<p><p>Quercetin (Que) is present in many vegetables and fruits as a secondary antioxidant metabolite. Deoxynivalenol (DON) produced by various Fusarium mould species can induce cytotoxicity and oxidative stress in the gastrointestinal tracts of humans and farm animals. The aim of this study was to investigate the effects of Que on DON-induced oxidative stress in a non-tumourigenic porcine IPEC-J2 cell line. Two experimental designs were used in our experiments as follows: (a) pretreatment with 20 µmol/L Que for 24 h followed by 1-h 1 µmol/L DON treatment and (b) simultaneous application of 20 µmol/L Que and 1 µmol/L DON for 1 h. Cell cytotoxicity, transepithelial electrical resistance (TER) of cell monolayers and extracellular/intracellular redox status were studied. It was found that DON significantly decreased TER and triggered oxidative stress, while Que pretreatments were beneficial in maintaining the integrity of the monolayers and alleviated oxidative stress. However, co-treatment with Que was unable to preserve the integrity and redox balance of the cells exposed to DON. These results indicate that only the 24-h preincubation of cells with 20 µmol/L Que was beneficial in compensating for the disruption caused by DON in extracellular oxidative status.</p>","PeriodicalId":7247,"journal":{"name":"Acta veterinaria Hungarica","volume":"68 4","pages":"380-386"},"PeriodicalIF":0.7000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The impact of quercetin on a porcine intestinal epithelial cell line exposed to deoxynivalenol.\",\"authors\":\"Judit Mercédesz Pomothy, Katrina Gatt, Ákos Jerzsele, Erzsébet Pászti Gere\",\"doi\":\"10.1556/004.2020.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quercetin (Que) is present in many vegetables and fruits as a secondary antioxidant metabolite. Deoxynivalenol (DON) produced by various Fusarium mould species can induce cytotoxicity and oxidative stress in the gastrointestinal tracts of humans and farm animals. The aim of this study was to investigate the effects of Que on DON-induced oxidative stress in a non-tumourigenic porcine IPEC-J2 cell line. Two experimental designs were used in our experiments as follows: (a) pretreatment with 20 µmol/L Que for 24 h followed by 1-h 1 µmol/L DON treatment and (b) simultaneous application of 20 µmol/L Que and 1 µmol/L DON for 1 h. Cell cytotoxicity, transepithelial electrical resistance (TER) of cell monolayers and extracellular/intracellular redox status were studied. It was found that DON significantly decreased TER and triggered oxidative stress, while Que pretreatments were beneficial in maintaining the integrity of the monolayers and alleviated oxidative stress. However, co-treatment with Que was unable to preserve the integrity and redox balance of the cells exposed to DON. These results indicate that only the 24-h preincubation of cells with 20 µmol/L Que was beneficial in compensating for the disruption caused by DON in extracellular oxidative status.</p>\",\"PeriodicalId\":7247,\"journal\":{\"name\":\"Acta veterinaria Hungarica\",\"volume\":\"68 4\",\"pages\":\"380-386\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta veterinaria Hungarica\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1556/004.2020.00052\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta veterinaria Hungarica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1556/004.2020.00052","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
The impact of quercetin on a porcine intestinal epithelial cell line exposed to deoxynivalenol.
Quercetin (Que) is present in many vegetables and fruits as a secondary antioxidant metabolite. Deoxynivalenol (DON) produced by various Fusarium mould species can induce cytotoxicity and oxidative stress in the gastrointestinal tracts of humans and farm animals. The aim of this study was to investigate the effects of Que on DON-induced oxidative stress in a non-tumourigenic porcine IPEC-J2 cell line. Two experimental designs were used in our experiments as follows: (a) pretreatment with 20 µmol/L Que for 24 h followed by 1-h 1 µmol/L DON treatment and (b) simultaneous application of 20 µmol/L Que and 1 µmol/L DON for 1 h. Cell cytotoxicity, transepithelial electrical resistance (TER) of cell monolayers and extracellular/intracellular redox status were studied. It was found that DON significantly decreased TER and triggered oxidative stress, while Que pretreatments were beneficial in maintaining the integrity of the monolayers and alleviated oxidative stress. However, co-treatment with Que was unable to preserve the integrity and redox balance of the cells exposed to DON. These results indicate that only the 24-h preincubation of cells with 20 µmol/L Que was beneficial in compensating for the disruption caused by DON in extracellular oxidative status.
期刊介绍:
Acta Veterinaria Hungarica publishes original research papers presenting new scientific results of international interest, and to a limited extent also review articles and clinical case reports, on veterinary physiology (physiological chemistry and metabolism), veterinary microbiology (bacteriology, virology, immunology, molecular biology), on the infectious diseases of domestic animals, on veterinary parasitology, pathology, clinical veterinary science and reproduction.