基于虚点概念的光纤激光光声层析成像分辨率的提高。

4区 计算机科学 Q1 Arts and Humanities Visual Computing for Industry, Biomedicine, and Art Pub Date : 2021-02-23 DOI:10.1186/s42492-021-00070-4
Xue Bai, Xu Li, Jun Ma, Bai-Ou Guan
{"title":"基于虚点概念的光纤激光光声层析成像分辨率的提高。","authors":"Xue Bai,&nbsp;Xu Li,&nbsp;Jun Ma,&nbsp;Bai-Ou Guan","doi":"10.1186/s42492-021-00070-4","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a virtual-point concept was introduced into fiber-laser photoacoustic tomography to improve the elevational image resolution. The flexible fiber laser was bent into an arc shape to conform to the ultrasound wavefront, which formed an ultrasound focus at the center of the arc. The synthetic aperture focusing technique was utilized to reconstruct the images; as a result, the elevational resolution particularly within the out-of-focus region was considerably improved compared to the resolution of an image retrieved by multiplexing the PA time-resolved signals with sound velocity. The all-optical fiber-laser photoacoustic tomography system with a high spatial resolution has potential for various applications, including biomedical research and preclinical/clinical diagnosis.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"4 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902747/pdf/","citationCount":"1","resultStr":"{\"title\":\"Improvement in resolution of fiber-laser photoacoustic tomography based on a virtual-point concept.\",\"authors\":\"Xue Bai,&nbsp;Xu Li,&nbsp;Jun Ma,&nbsp;Bai-Ou Guan\",\"doi\":\"10.1186/s42492-021-00070-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a virtual-point concept was introduced into fiber-laser photoacoustic tomography to improve the elevational image resolution. The flexible fiber laser was bent into an arc shape to conform to the ultrasound wavefront, which formed an ultrasound focus at the center of the arc. The synthetic aperture focusing technique was utilized to reconstruct the images; as a result, the elevational resolution particularly within the out-of-focus region was considerably improved compared to the resolution of an image retrieved by multiplexing the PA time-resolved signals with sound velocity. The all-optical fiber-laser photoacoustic tomography system with a high spatial resolution has potential for various applications, including biomedical research and preclinical/clinical diagnosis.</p>\",\"PeriodicalId\":52384,\"journal\":{\"name\":\"Visual Computing for Industry, Biomedicine, and Art\",\"volume\":\"4 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902747/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry, Biomedicine, and Art\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-021-00070-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-021-00070-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

摘要

本研究将虚点概念引入光纤激光光声层析成像中,以提高图像的高程分辨率。将柔性光纤激光器弯曲成符合超声波前的圆弧形状,在圆弧中心形成超声聚焦。利用合成孔径聚焦技术对图像进行重构;因此,与将PA时间分辨信号与声速进行多路复用获得的图像分辨率相比,高度分辨率,特别是失焦区域内的高度分辨率得到了显著提高。具有高空间分辨率的全光纤-激光光声断层成像系统具有广泛的应用前景,包括生物医学研究和临床前/临床诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement in resolution of fiber-laser photoacoustic tomography based on a virtual-point concept.

In this study, a virtual-point concept was introduced into fiber-laser photoacoustic tomography to improve the elevational image resolution. The flexible fiber laser was bent into an arc shape to conform to the ultrasound wavefront, which formed an ultrasound focus at the center of the arc. The synthetic aperture focusing technique was utilized to reconstruct the images; as a result, the elevational resolution particularly within the out-of-focus region was considerably improved compared to the resolution of an image retrieved by multiplexing the PA time-resolved signals with sound velocity. The all-optical fiber-laser photoacoustic tomography system with a high spatial resolution has potential for various applications, including biomedical research and preclinical/clinical diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Computing for Industry, Biomedicine, and Art
Visual Computing for Industry, Biomedicine, and Art Arts and Humanities-Visual Arts and Performing Arts
CiteScore
5.60
自引率
0.00%
发文量
28
审稿时长
5 weeks
期刊最新文献
Discrimination between leucine-rich glioma-inactivated 1 antibody encephalitis and gamma-aminobutyric acid B receptor antibody encephalitis based on ResNet18. Hyperparameter optimization for cardiovascular disease data-driven prognostic system. Survey of methods and principles in three-dimensional reconstruction from two-dimensional medical images. Vision transformer architecture and applications in digital health: a tutorial and survey. DB-DCAFN: dual-branch deformable cross-attention fusion network for bacterial segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1