真菌天然产物星系:开发重磅药物的生物化学和分子遗传学。

4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Advances in Genetics Pub Date : 2021-01-01 Epub Date: 2021-02-02 DOI:10.1016/bs.adgen.2020.11.006
Keshab Bhattarai, Keshab Bhattarai, Md Ehsanul Kabir, Rina Bastola, Bikash Baral
{"title":"真菌天然产物星系:开发重磅药物的生物化学和分子遗传学。","authors":"Keshab Bhattarai,&nbsp;Keshab Bhattarai,&nbsp;Md Ehsanul Kabir,&nbsp;Rina Bastola,&nbsp;Bikash Baral","doi":"10.1016/bs.adgen.2020.11.006","DOIUrl":null,"url":null,"abstract":"<p><p>Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.adgen.2020.11.006","citationCount":"7","resultStr":"{\"title\":\"Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery.\",\"authors\":\"Keshab Bhattarai,&nbsp;Keshab Bhattarai,&nbsp;Md Ehsanul Kabir,&nbsp;Rina Bastola,&nbsp;Bikash Baral\",\"doi\":\"10.1016/bs.adgen.2020.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.</p>\",\"PeriodicalId\":50949,\"journal\":{\"name\":\"Advances in Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.adgen.2020.11.006\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.adgen.2020.11.006\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.adgen.2020.11.006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7

摘要

真菌合成的次生代谢物已成为新药设计的宝贵灵感来源。事实上,真菌是迷人的、多样的、结构复杂的、低分子质量的天然产物的多产生产者,具有很高的治疗价值,如新型抗菌化合物、抗癌化合物、免疫抑制剂等。鉴于这些微生物具有分泌多种化学支架的非凡能力,它们已被大型制药公司高度利用来产生小分子。这已经成为可能,因为从真菌天然来源中分离代谢物是可行的,并且超越了化合物的有机合成,否则有机合成仍然是药物发现过程中的一个重大瓶颈。在这篇综合综述中,我们讨论了来自不同栖息地(陆地和海洋)的不同真菌(致病的、非致病的、共生的和内生/共生的)的最新研究,它们生物合成的专门代谢物,以及从这些专门代谢物中衍生的药物。此外,我们还揭示了NRPS、PKS、PKS-NRPS杂交、RiPPS、萜类、吲哚类生物碱等重要化学支架生物合成的逻辑及其遗传机制。此外,我们还提供了真菌毒素,毒力因子和基于真菌感染的宿主免疫反应背后的概念的一瞥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery.

Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Genetics
Advances in Genetics 生物-遗传学
CiteScore
5.70
自引率
0.00%
发文量
1
审稿时长
1 months
期刊介绍: Advances in Genetics presents an eclectic mix of articles of use to all human and molecular geneticists. They are written and edited by recognized leaders in the field and make this an essential series of books for anyone in the genetics field.
期刊最新文献
Circadian rhythm and host genetics. Genomic predictors of physical activity and athletic performance. Host genetics and nutrition. Human adaptations to diet: Biological and cultural coevolution. Impact of evolution on lifestyle in microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1