Guanqing Chen, Valerie A Lewis, Daniel Gottlieb, A James O'Malley
{"title":"当控制组缺乏组织隶属关系时,评估跨组织政策干预的异质效应:应用于责任关怀组织的评估。","authors":"Guanqing Chen, Valerie A Lewis, Daniel Gottlieb, A James O'Malley","doi":"10.1007/s10742-020-00230-8","DOIUrl":null,"url":null,"abstract":"<p><p>First introduced in early 2000s, the accountable care organization (ACO) is designed to lower health care costs while improving quality of care and has become one of the most important coordinated care technologies in the United States. In this research, we use the Medicare fee-for-service claims data from 2009-2014 to estimate the heterogeneous effects of Medicare ACO programs on hospital admissions across hospital referral regions (HRRs) and provider groups. To conduct our analysis, a model for a difference-in-difference (DID) study is embellished in multiple ways to account for intricacies and complexity with the data not able to be accounted for using existing models. Of particular note, we propose a Gaussian mixture model to account for the inability to observe the practice group affiliation of physicians if the organization they worked for did not become an ACO, which is needed to ensure appropriate partitioning of variation across the different units. The results suggest that the ACO programs reduced the rate of readmission to hospital, that the ACO program may have reduced heterogeneity in readmission rates, and that the effect of joining an ACO varied considerably across medical groups.</p>","PeriodicalId":45600,"journal":{"name":"Health Services and Outcomes Research Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10742-020-00230-8","citationCount":"1","resultStr":"{\"title\":\"Estimating Heterogeneous Effects of a Policy Intervention across Organizations when Organization Affiliation is Missing for the Control Group: Application to the Evaluation of Accountable Care Organizations.\",\"authors\":\"Guanqing Chen, Valerie A Lewis, Daniel Gottlieb, A James O'Malley\",\"doi\":\"10.1007/s10742-020-00230-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>First introduced in early 2000s, the accountable care organization (ACO) is designed to lower health care costs while improving quality of care and has become one of the most important coordinated care technologies in the United States. In this research, we use the Medicare fee-for-service claims data from 2009-2014 to estimate the heterogeneous effects of Medicare ACO programs on hospital admissions across hospital referral regions (HRRs) and provider groups. To conduct our analysis, a model for a difference-in-difference (DID) study is embellished in multiple ways to account for intricacies and complexity with the data not able to be accounted for using existing models. Of particular note, we propose a Gaussian mixture model to account for the inability to observe the practice group affiliation of physicians if the organization they worked for did not become an ACO, which is needed to ensure appropriate partitioning of variation across the different units. The results suggest that the ACO programs reduced the rate of readmission to hospital, that the ACO program may have reduced heterogeneity in readmission rates, and that the effect of joining an ACO varied considerably across medical groups.</p>\",\"PeriodicalId\":45600,\"journal\":{\"name\":\"Health Services and Outcomes Research Methodology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10742-020-00230-8\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Services and Outcomes Research Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10742-020-00230-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Services and Outcomes Research Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10742-020-00230-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Estimating Heterogeneous Effects of a Policy Intervention across Organizations when Organization Affiliation is Missing for the Control Group: Application to the Evaluation of Accountable Care Organizations.
First introduced in early 2000s, the accountable care organization (ACO) is designed to lower health care costs while improving quality of care and has become one of the most important coordinated care technologies in the United States. In this research, we use the Medicare fee-for-service claims data from 2009-2014 to estimate the heterogeneous effects of Medicare ACO programs on hospital admissions across hospital referral regions (HRRs) and provider groups. To conduct our analysis, a model for a difference-in-difference (DID) study is embellished in multiple ways to account for intricacies and complexity with the data not able to be accounted for using existing models. Of particular note, we propose a Gaussian mixture model to account for the inability to observe the practice group affiliation of physicians if the organization they worked for did not become an ACO, which is needed to ensure appropriate partitioning of variation across the different units. The results suggest that the ACO programs reduced the rate of readmission to hospital, that the ACO program may have reduced heterogeneity in readmission rates, and that the effect of joining an ACO varied considerably across medical groups.
期刊介绍:
The journal reflects the multidisciplinary nature of the field of health services and outcomes research. It addresses the needs of multiple, interlocking communities, including methodologists in statistics, econometrics, social and behavioral sciences; designers and analysts of health policy and health services research projects; and health care providers and policy makers who need to properly understand and evaluate the results of published research. The journal strives to enhance the level of methodologic rigor in health services and outcomes research and contributes to the development of methodologic standards in the field. In pursuing its main objective, the journal also provides a meeting ground for researchers from a number of traditional disciplines and fosters the development of new quantitative, qualitative, and mixed methods by statisticians, econometricians, health services researchers, and methodologists in other fields. Health Services and Outcomes Research Methodology publishes: Research papers on quantitative, qualitative, and mixed methods; Case Studies describing applications of quantitative and qualitative methodology in health services and outcomes research; Review Articles synthesizing and popularizing methodologic developments; Tutorials; Articles on computational issues and software reviews; Book reviews; and Notices. Special issues will be devoted to papers presented at important workshops and conferences.