Fabienne Becker , Thorsten Stehlik , Uwe Linne , Michael Bölker , Johannes Freitag , Björn Sandrock
{"title":"工程黑穗病菌用于生产量身定制的甘露糖赤藓糖醇脂","authors":"Fabienne Becker , Thorsten Stehlik , Uwe Linne , Michael Bölker , Johannes Freitag , Björn Sandrock","doi":"10.1016/j.mec.2021.e00165","DOIUrl":null,"url":null,"abstract":"<div><p>Mannosylerythritol lipids (MELs) are surface active glycolipids secreted by various fungi. MELs can be used as biosurfactants and are a biodegradable resource for the production of detergents or pharmaceuticals. Different fungal species synthesize a unique mixture of MELs differing in acetyl- and acyl-groups attached to the sugar moiety. Here, we report the construction of a toolbox for production of glycolipids with predictable fatty acid side chains in the basidiomycete <em>Ustilago maydis</em>. Genes coding for acyl-transferases involved in MEL production (Mac1 and Mac2) from different fungal species were combined to obtain altered MEL variants with distinct physical properties and altered antimicrobial activity. We also demonstrate that a <em>U. maydis</em> paralog of the acyltransferase Mac2 with a different substrate specificity can be employed for the biosynthesis of modified MEL variants. In summary, our data showcase how the fungal repertoire of Mac enzymes can be used to engineer tailor-made MELs according to specific biotechnological or pharmaceutical requirements.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00165","citationCount":"14","resultStr":"{\"title\":\"Engineering Ustilago maydis for production of tailor-made mannosylerythritol lipids\",\"authors\":\"Fabienne Becker , Thorsten Stehlik , Uwe Linne , Michael Bölker , Johannes Freitag , Björn Sandrock\",\"doi\":\"10.1016/j.mec.2021.e00165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mannosylerythritol lipids (MELs) are surface active glycolipids secreted by various fungi. MELs can be used as biosurfactants and are a biodegradable resource for the production of detergents or pharmaceuticals. Different fungal species synthesize a unique mixture of MELs differing in acetyl- and acyl-groups attached to the sugar moiety. Here, we report the construction of a toolbox for production of glycolipids with predictable fatty acid side chains in the basidiomycete <em>Ustilago maydis</em>. Genes coding for acyl-transferases involved in MEL production (Mac1 and Mac2) from different fungal species were combined to obtain altered MEL variants with distinct physical properties and altered antimicrobial activity. We also demonstrate that a <em>U. maydis</em> paralog of the acyltransferase Mac2 with a different substrate specificity can be employed for the biosynthesis of modified MEL variants. In summary, our data showcase how the fungal repertoire of Mac enzymes can be used to engineer tailor-made MELs according to specific biotechnological or pharmaceutical requirements.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00165\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030121000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030121000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Engineering Ustilago maydis for production of tailor-made mannosylerythritol lipids
Mannosylerythritol lipids (MELs) are surface active glycolipids secreted by various fungi. MELs can be used as biosurfactants and are a biodegradable resource for the production of detergents or pharmaceuticals. Different fungal species synthesize a unique mixture of MELs differing in acetyl- and acyl-groups attached to the sugar moiety. Here, we report the construction of a toolbox for production of glycolipids with predictable fatty acid side chains in the basidiomycete Ustilago maydis. Genes coding for acyl-transferases involved in MEL production (Mac1 and Mac2) from different fungal species were combined to obtain altered MEL variants with distinct physical properties and altered antimicrobial activity. We also demonstrate that a U. maydis paralog of the acyltransferase Mac2 with a different substrate specificity can be employed for the biosynthesis of modified MEL variants. In summary, our data showcase how the fungal repertoire of Mac enzymes can be used to engineer tailor-made MELs according to specific biotechnological or pharmaceutical requirements.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.