在罕见的翻译相关疾病中补充精胺。

IF 4.1 Q2 CELL BIOLOGY Cell Stress Pub Date : 2021-03-08 DOI:10.15698/cst2021.03.243
Andreas Zimmermann, Didac Carmona-Gutierrez, Frank Madeo
{"title":"在罕见的翻译相关疾病中补充精胺。","authors":"Andreas Zimmermann, Didac Carmona-Gutierrez, Frank Madeo","doi":"10.15698/cst2021.03.243","DOIUrl":null,"url":null,"abstract":"<p><p>The polyamine spermidine is essential for protein translation in eukaryotes, both as a substrate for the hypusination of the translation initiation factor eIF5A as well as general translational fidelity. Dwindling spermidine levels during aging have been implicated in reduced immune cell function through insufficient eIF5A hypusination, which can be restored by external supplementation. Recent findings characterize a group of novel Mendelian disorders linked to <i>EIF5A</i> missense and nonsense variants that cause protein translation defects. In model organisms that recapitulate these mutations, spermidine supplementation was able to alleviate at least some of the concomitant protein translation defects. Here, we discuss the role of spermidine in protein translation and possible therapeutic avenues for translation-associated disorders.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spermidine supplementation in rare translation-associated disorders.\",\"authors\":\"Andreas Zimmermann, Didac Carmona-Gutierrez, Frank Madeo\",\"doi\":\"10.15698/cst2021.03.243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The polyamine spermidine is essential for protein translation in eukaryotes, both as a substrate for the hypusination of the translation initiation factor eIF5A as well as general translational fidelity. Dwindling spermidine levels during aging have been implicated in reduced immune cell function through insufficient eIF5A hypusination, which can be restored by external supplementation. Recent findings characterize a group of novel Mendelian disorders linked to <i>EIF5A</i> missense and nonsense variants that cause protein translation defects. In model organisms that recapitulate these mutations, spermidine supplementation was able to alleviate at least some of the concomitant protein translation defects. Here, we discuss the role of spermidine in protein translation and possible therapeutic avenues for translation-associated disorders.</p>\",\"PeriodicalId\":36371,\"journal\":{\"name\":\"Cell Stress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15698/cst2021.03.243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2021.03.243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多胺亚精胺对真核生物的蛋白质翻译至关重要,它既是翻译起始因子 eIF5A 低度化的底物,也是一般翻译保真度的底物。在衰老过程中,由于 eIF5A 低通透性不足,导致免疫细胞功能下降,而外部补充可恢复免疫细胞功能。最近的研究结果表明,一组新型孟德尔疾病与导致蛋白质翻译缺陷的 EIF5A 错义和无义变体有关。在重现这些变异的模式生物中,补充亚精胺至少能缓解部分伴随的蛋白质翻译缺陷。在此,我们讨论了亚精胺在蛋白质翻译中的作用以及翻译相关疾病的可能治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spermidine supplementation in rare translation-associated disorders.

The polyamine spermidine is essential for protein translation in eukaryotes, both as a substrate for the hypusination of the translation initiation factor eIF5A as well as general translational fidelity. Dwindling spermidine levels during aging have been implicated in reduced immune cell function through insufficient eIF5A hypusination, which can be restored by external supplementation. Recent findings characterize a group of novel Mendelian disorders linked to EIF5A missense and nonsense variants that cause protein translation defects. In model organisms that recapitulate these mutations, spermidine supplementation was able to alleviate at least some of the concomitant protein translation defects. Here, we discuss the role of spermidine in protein translation and possible therapeutic avenues for translation-associated disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Stress
Cell Stress Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍: Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging. The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.
期刊最新文献
Dynamics of cell membrane lesions and adaptive conductance under the electrical stress. Saliva, a molecular reflection of the human body? Implications for diagnosis and treatment. CircRNA regulates the liquid-liquid phase separation of ATG4B, a novel strategy to inhibit cancer metastasis? Pathogenic hyperactivation of mTORC1 by cytoplasmic EP300 in Hutchinson-Gilford progeria syndrome. The missing hallmark of health: psychosocial adaptation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1