空间表达数据的综合分析和可视化工具箱。

IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Genome Biology Pub Date : 2021-03-08 DOI:10.1186/s13059-021-02286-2
Ruben Dries, Qian Zhu, Rui Dong, Chee-Huat Linus Eng, Huipeng Li, Kan Liu, Yuntian Fu, Tianxiao Zhao, Arpan Sarkar, Feng Bao, Rani E George, Nico Pierson, Long Cai, Guo-Cheng Yuan
{"title":"空间表达数据的综合分析和可视化工具箱。","authors":"Ruben Dries,&nbsp;Qian Zhu,&nbsp;Rui Dong,&nbsp;Chee-Huat Linus Eng,&nbsp;Huipeng Li,&nbsp;Kan Liu,&nbsp;Yuntian Fu,&nbsp;Tianxiao Zhao,&nbsp;Arpan Sarkar,&nbsp;Feng Bao,&nbsp;Rani E George,&nbsp;Nico Pierson,&nbsp;Long Cai,&nbsp;Guo-Cheng Yuan","doi":"10.1186/s13059-021-02286-2","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomic and proteomic technologies have provided new opportunities to investigate cells in their native microenvironment. Here we present Giotto, a comprehensive and open-source toolbox for spatial data analysis and visualization. The analysis module provides end-to-end analysis by implementing a wide range of algorithms for characterizing tissue composition, spatial expression patterns, and cellular interactions. Furthermore, single-cell RNAseq data can be integrated for spatial cell-type enrichment analysis. The visualization module allows users to interactively visualize analysis outputs and imaging features. To demonstrate its general applicability, we apply Giotto to a wide range of datasets encompassing diverse technologies and platforms.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"78"},"PeriodicalIF":12.3000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02286-2","citationCount":"337","resultStr":"{\"title\":\"Giotto: a toolbox for integrative analysis and visualization of spatial expression data.\",\"authors\":\"Ruben Dries,&nbsp;Qian Zhu,&nbsp;Rui Dong,&nbsp;Chee-Huat Linus Eng,&nbsp;Huipeng Li,&nbsp;Kan Liu,&nbsp;Yuntian Fu,&nbsp;Tianxiao Zhao,&nbsp;Arpan Sarkar,&nbsp;Feng Bao,&nbsp;Rani E George,&nbsp;Nico Pierson,&nbsp;Long Cai,&nbsp;Guo-Cheng Yuan\",\"doi\":\"10.1186/s13059-021-02286-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial transcriptomic and proteomic technologies have provided new opportunities to investigate cells in their native microenvironment. Here we present Giotto, a comprehensive and open-source toolbox for spatial data analysis and visualization. The analysis module provides end-to-end analysis by implementing a wide range of algorithms for characterizing tissue composition, spatial expression patterns, and cellular interactions. Furthermore, single-cell RNAseq data can be integrated for spatial cell-type enrichment analysis. The visualization module allows users to interactively visualize analysis outputs and imaging features. To demonstrate its general applicability, we apply Giotto to a wide range of datasets encompassing diverse technologies and platforms.</p>\",\"PeriodicalId\":48922,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"22 1\",\"pages\":\"78\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13059-021-02286-2\",\"citationCount\":\"337\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-021-02286-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-021-02286-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 337

摘要

空间转录组学和蛋白质组学技术为研究细胞的原生微环境提供了新的机会。在这里,我们介绍Giotto,一个全面的开源工具箱,用于空间数据分析和可视化。分析模块通过实现广泛的算法来表征组织组成、空间表达模式和细胞相互作用,提供端到端分析。此外,单细胞RNAseq数据可以集成用于空间细胞型富集分析。可视化模块允许用户交互式地可视化分析输出和成像功能。为了证明其一般适用性,我们将Giotto应用于包括不同技术和平台的广泛数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Giotto: a toolbox for integrative analysis and visualization of spatial expression data.

Spatial transcriptomic and proteomic technologies have provided new opportunities to investigate cells in their native microenvironment. Here we present Giotto, a comprehensive and open-source toolbox for spatial data analysis and visualization. The analysis module provides end-to-end analysis by implementing a wide range of algorithms for characterizing tissue composition, spatial expression patterns, and cellular interactions. Furthermore, single-cell RNAseq data can be integrated for spatial cell-type enrichment analysis. The visualization module allows users to interactively visualize analysis outputs and imaging features. To demonstrate its general applicability, we apply Giotto to a wide range of datasets encompassing diverse technologies and platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
25.50
自引率
3.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields. With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category. In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.
期刊最新文献
Cohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion. DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates. Seqrutinator: scrutiny of large protein superfamily sequence datasets for the identification and elimination of non-functional homologues. Systemic interindividual DNA methylation variants in cattle share major hallmarks with those in humans. TaqTth-hpRNA: a novel compact RNA-targeting tool for specific silencing of pathogenic mRNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1