蛋白激酶C-θ敲除可降低血清IL-10水平,抑制胰岛β细胞分泌胰岛素。

IF 1.9 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Islets Pub Date : 2021-03-04 Epub Date: 2021-03-09 DOI:10.1080/19382014.2021.1890963
Feng Hong, Yang Yang, Baiyi Chen, Peng Li, Guoguang Wang, Yuxin Jiang
{"title":"蛋白激酶C-θ敲除可降低血清IL-10水平,抑制胰岛β细胞分泌胰岛素。","authors":"Feng Hong,&nbsp;Yang Yang,&nbsp;Baiyi Chen,&nbsp;Peng Li,&nbsp;Guoguang Wang,&nbsp;Yuxin Jiang","doi":"10.1080/19382014.2021.1890963","DOIUrl":null,"url":null,"abstract":"<p><p>Various subtypes of protein kinase C (PKC) are expressed in islet β cells and regulate β cell proliferation and survival. PKC-θ is distributed in the immune system and promotes the secretion of IL-10, which manifests a critical role in the onset of diabetes, by the immune cells. However, the role of PKC-θ in islets has not been concerned. In the present study, we investigated the role of PKC-θ in the protection of islet β cells and insulin secretion. Fasting glucose and insulin measurement, glucose tolerant test, immunofluorescence, and ELISA were conducted to study the influence of PKC-θ knockout on islet β cell survival and function, and explore the mechanism underlying this regulation. PKC-θ knockout mice at 2 weeks manifested normal serum insulin levels, glucose tolerance, and β cell mass. Knockout mice at 8 weeks show decreased β cell mass, but manifested normal insulin levels and glucose tolerance. Knockout mice at 16 weeks manifested impaired glucose tolerance, β cell mass, and decreased glucose stimulated insulin secretion. Furthermore, knockout mice manifested decreased serum IL-10 level compared with normal mice since 2 weeks. IL-10 injection into knockout mice improved glucose tolerance, serum insulin level, and reduced β cell mass, and IL-10 administration into cultured pancreatic tissue increased glucose stimulated insulin secretion. PKC-θ knockout decreases the secretion of IL-10, reduces β cell mass and insulin secretion in pancreatic islets. The present study illuminates the critical role of PKC-θ in protecting the survival and function of islet β cells.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"13 1-2","pages":"24-31"},"PeriodicalIF":1.9000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2021.1890963","citationCount":"0","resultStr":"{\"title\":\"Protein kinase C-θ knockout decreases serum IL-10 levels and inhibits insulin secretion from islet β cells.\",\"authors\":\"Feng Hong,&nbsp;Yang Yang,&nbsp;Baiyi Chen,&nbsp;Peng Li,&nbsp;Guoguang Wang,&nbsp;Yuxin Jiang\",\"doi\":\"10.1080/19382014.2021.1890963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various subtypes of protein kinase C (PKC) are expressed in islet β cells and regulate β cell proliferation and survival. PKC-θ is distributed in the immune system and promotes the secretion of IL-10, which manifests a critical role in the onset of diabetes, by the immune cells. However, the role of PKC-θ in islets has not been concerned. In the present study, we investigated the role of PKC-θ in the protection of islet β cells and insulin secretion. Fasting glucose and insulin measurement, glucose tolerant test, immunofluorescence, and ELISA were conducted to study the influence of PKC-θ knockout on islet β cell survival and function, and explore the mechanism underlying this regulation. PKC-θ knockout mice at 2 weeks manifested normal serum insulin levels, glucose tolerance, and β cell mass. Knockout mice at 8 weeks show decreased β cell mass, but manifested normal insulin levels and glucose tolerance. Knockout mice at 16 weeks manifested impaired glucose tolerance, β cell mass, and decreased glucose stimulated insulin secretion. Furthermore, knockout mice manifested decreased serum IL-10 level compared with normal mice since 2 weeks. IL-10 injection into knockout mice improved glucose tolerance, serum insulin level, and reduced β cell mass, and IL-10 administration into cultured pancreatic tissue increased glucose stimulated insulin secretion. PKC-θ knockout decreases the secretion of IL-10, reduces β cell mass and insulin secretion in pancreatic islets. The present study illuminates the critical role of PKC-θ in protecting the survival and function of islet β cells.</p>\",\"PeriodicalId\":14671,\"journal\":{\"name\":\"Islets\",\"volume\":\"13 1-2\",\"pages\":\"24-31\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19382014.2021.1890963\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Islets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19382014.2021.1890963\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Islets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19382014.2021.1890963","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

多种蛋白激酶C (PKC)亚型在胰岛β细胞中表达,并调节β细胞的增殖和存活。PKC-θ分布于免疫系统,促进免疫细胞分泌IL-10, IL-10在糖尿病的发病中起着关键作用。然而,PKC-θ在胰岛中的作用尚未得到关注。在本研究中,我们研究了PKC-θ在保护胰岛β细胞和胰岛素分泌中的作用。通过空腹血糖和胰岛素测定、糖耐量试验、免疫荧光、ELISA等方法研究PKC-θ敲除对胰岛β细胞存活和功能的影响,并探讨其调控机制。2周时,PKC-θ基因敲除小鼠血清胰岛素水平、葡萄糖耐量和β细胞质量均正常。8周敲除小鼠β细胞质量下降,但胰岛素水平和葡萄糖耐量正常。16周敲除小鼠表现出糖耐量、β细胞质量受损,葡萄糖刺激胰岛素分泌减少。与正常小鼠相比,基因敲除小鼠血清IL-10水平从2周开始下降。敲除小鼠注射IL-10可改善葡萄糖耐量、血清胰岛素水平,减少β细胞质量,培养胰腺组织注射IL-10可增加葡萄糖刺激胰岛素分泌。敲除PKC-θ可降低胰岛IL-10分泌,减少β细胞质量和胰岛素分泌。本研究阐明了PKC-θ在保护胰岛β细胞存活和功能中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein kinase C-θ knockout decreases serum IL-10 levels and inhibits insulin secretion from islet β cells.

Various subtypes of protein kinase C (PKC) are expressed in islet β cells and regulate β cell proliferation and survival. PKC-θ is distributed in the immune system and promotes the secretion of IL-10, which manifests a critical role in the onset of diabetes, by the immune cells. However, the role of PKC-θ in islets has not been concerned. In the present study, we investigated the role of PKC-θ in the protection of islet β cells and insulin secretion. Fasting glucose and insulin measurement, glucose tolerant test, immunofluorescence, and ELISA were conducted to study the influence of PKC-θ knockout on islet β cell survival and function, and explore the mechanism underlying this regulation. PKC-θ knockout mice at 2 weeks manifested normal serum insulin levels, glucose tolerance, and β cell mass. Knockout mice at 8 weeks show decreased β cell mass, but manifested normal insulin levels and glucose tolerance. Knockout mice at 16 weeks manifested impaired glucose tolerance, β cell mass, and decreased glucose stimulated insulin secretion. Furthermore, knockout mice manifested decreased serum IL-10 level compared with normal mice since 2 weeks. IL-10 injection into knockout mice improved glucose tolerance, serum insulin level, and reduced β cell mass, and IL-10 administration into cultured pancreatic tissue increased glucose stimulated insulin secretion. PKC-θ knockout decreases the secretion of IL-10, reduces β cell mass and insulin secretion in pancreatic islets. The present study illuminates the critical role of PKC-θ in protecting the survival and function of islet β cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Islets
Islets ENDOCRINOLOGY & METABOLISM-
CiteScore
3.30
自引率
4.50%
发文量
10
审稿时长
>12 weeks
期刊介绍: Islets is the first international, peer-reviewed research journal dedicated to islet biology. Islets publishes high-quality clinical and experimental research into the physiology and pathology of the islets of Langerhans. In addition to original research manuscripts, Islets is the leading source for cutting-edge Perspectives, Reviews and Commentaries. Our goal is to foster communication and a rapid exchange of information through timely publication of important results using print as well as electronic formats.
期刊最新文献
3D evaluation of the extracellular matrix of hypoxic pancreatic islets using light sheet fluorescence microscopy. Serum from pregnant donors induces human beta cell proliferation. Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species. Decreased islet amyloid polypeptide staining in the islets of insulinoma patients. Human research islet cell culture outcomes at the Alberta Diabetes Institute IsletCore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1