Brian Stasak, Zhaocheng Huang, Sabah Razavi, Dale Joachim, Julien Epps
{"title":"基于短时声学智能手机语音分析的 COVID-19 自动检测。","authors":"Brian Stasak, Zhaocheng Huang, Sabah Razavi, Dale Joachim, Julien Epps","doi":"10.1007/s41666-020-00090-4","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, there is an increasing global need for COVID-19 screening to help reduce the rate of infection and at-risk patient workload at hospitals. Smartphone-based screening for COVID-19 along with other respiratory illnesses offers excellent potential due to its rapid-rollout remote platform, user convenience, symptom tracking, comparatively low cost, and prompt result processing timeframe. In particular, speech-based analysis embedded in smartphone app technology can measure physiological effects relevant to COVID-19 screening that are not yet digitally available at scale in the healthcare field. Using a selection of the Sonde Health COVID-19 2020 dataset, this study examines the speech of COVID-19-negative participants exhibiting <i>mild</i> and <i>moderate</i> COVID-19-like symptoms as well as that of COVID-19-positive participants with <i>mild</i> to <i>moderate</i> symptoms. Our study investigates the classification potential of acoustic features (e.g., glottal, prosodic, spectral) from short-duration speech segments (e.g., held vowel, pataka phrase, nasal phrase) for automatic COVID-19 classification using machine learning. Experimental results indicate that certain feature-task combinations can produce COVID-19 classification accuracy of up to 80% as compared with using the all-acoustic feature baseline (68%). Further, with brute-forced <i>n</i>-best feature selection and speech task fusion, automatic COVID-19 classification accuracy of upwards of 82-86% was achieved, depending on whether the COVID-19-negative participant had <i>mild</i> or <i>moderate</i> COVID-19-like symptom severity.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic Detection of COVID-19 Based on Short-Duration Acoustic Smartphone Speech Analysis.\",\"authors\":\"Brian Stasak, Zhaocheng Huang, Sabah Razavi, Dale Joachim, Julien Epps\",\"doi\":\"10.1007/s41666-020-00090-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, there is an increasing global need for COVID-19 screening to help reduce the rate of infection and at-risk patient workload at hospitals. Smartphone-based screening for COVID-19 along with other respiratory illnesses offers excellent potential due to its rapid-rollout remote platform, user convenience, symptom tracking, comparatively low cost, and prompt result processing timeframe. In particular, speech-based analysis embedded in smartphone app technology can measure physiological effects relevant to COVID-19 screening that are not yet digitally available at scale in the healthcare field. Using a selection of the Sonde Health COVID-19 2020 dataset, this study examines the speech of COVID-19-negative participants exhibiting <i>mild</i> and <i>moderate</i> COVID-19-like symptoms as well as that of COVID-19-positive participants with <i>mild</i> to <i>moderate</i> symptoms. Our study investigates the classification potential of acoustic features (e.g., glottal, prosodic, spectral) from short-duration speech segments (e.g., held vowel, pataka phrase, nasal phrase) for automatic COVID-19 classification using machine learning. Experimental results indicate that certain feature-task combinations can produce COVID-19 classification accuracy of up to 80% as compared with using the all-acoustic feature baseline (68%). Further, with brute-forced <i>n</i>-best feature selection and speech task fusion, automatic COVID-19 classification accuracy of upwards of 82-86% was achieved, depending on whether the COVID-19-negative participant had <i>mild</i> or <i>moderate</i> COVID-19-like symptom severity.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-020-00090-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-020-00090-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Automatic Detection of COVID-19 Based on Short-Duration Acoustic Smartphone Speech Analysis.
Currently, there is an increasing global need for COVID-19 screening to help reduce the rate of infection and at-risk patient workload at hospitals. Smartphone-based screening for COVID-19 along with other respiratory illnesses offers excellent potential due to its rapid-rollout remote platform, user convenience, symptom tracking, comparatively low cost, and prompt result processing timeframe. In particular, speech-based analysis embedded in smartphone app technology can measure physiological effects relevant to COVID-19 screening that are not yet digitally available at scale in the healthcare field. Using a selection of the Sonde Health COVID-19 2020 dataset, this study examines the speech of COVID-19-negative participants exhibiting mild and moderate COVID-19-like symptoms as well as that of COVID-19-positive participants with mild to moderate symptoms. Our study investigates the classification potential of acoustic features (e.g., glottal, prosodic, spectral) from short-duration speech segments (e.g., held vowel, pataka phrase, nasal phrase) for automatic COVID-19 classification using machine learning. Experimental results indicate that certain feature-task combinations can produce COVID-19 classification accuracy of up to 80% as compared with using the all-acoustic feature baseline (68%). Further, with brute-forced n-best feature selection and speech task fusion, automatic COVID-19 classification accuracy of upwards of 82-86% was achieved, depending on whether the COVID-19-negative participant had mild or moderate COVID-19-like symptom severity.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis