酒精对成年斑马鱼脑线粒体和突触体行为损伤和氧化应激的长期影响。

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Zebrafish Pub Date : 2021-04-01 Epub Date: 2021-03-15 DOI:10.1089/zeb.2020.1913
Manisha Nahar, Deepali Jat
{"title":"酒精对成年斑马鱼脑线粒体和突触体行为损伤和氧化应激的长期影响。","authors":"Manisha Nahar,&nbsp;Deepali Jat","doi":"10.1089/zeb.2020.1913","DOIUrl":null,"url":null,"abstract":"<p><p>Alcoholism causes deleterious effects such as physiological and neuronal alterations leading to the cognitive and other behavioral impairments. Mitochondrial and synaptosomal deteriorations in the brain of alcoholic persons exhibited metabolic, biochemical changes and other related risk factors, which mainly affect the brain function. This study aimed to assess the effect of chronic alcohol-induced mitochondrial and synaptosomal oxidative damage along with behavioral impairment in adult zebrafish. Zebrafish of control group received the system water and normal diet <i>ad libitum</i> (group I); the other groups were treated with 0.20% alcohol (group II) and 0.40% alcohol (group III) directly in fish tank for 22 days. The result revealed significant increase in lipid peroxidation, protein carbonylation, superoxide dismutase, and glutathione, and significant decline in the activity of catalase and Na<sup>+</sup>/K<sup>+</sup> ATPase compared to control. Furthermore, the alcohol-treated zebrafish also showed significant behavioral alterations. Collectively, this regulatory mechanism demonstrates the effect of long-term alcohol consumption in the zebrafish. Our results indicate that this recreational drug \"alcohol\" is harmful to brain mitochondria and synaptosomes, which are the main organelles, and play an important role in memory, learning, cognitive function, and ATP formation in the brain, which may represent a significant public health concern.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Long-Term Exposure of Alcohol Induced Behavioral Impairments and Oxidative Stress in the Brain Mitochondria and Synaptosomes of Adult Zebrafish.\",\"authors\":\"Manisha Nahar,&nbsp;Deepali Jat\",\"doi\":\"10.1089/zeb.2020.1913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alcoholism causes deleterious effects such as physiological and neuronal alterations leading to the cognitive and other behavioral impairments. Mitochondrial and synaptosomal deteriorations in the brain of alcoholic persons exhibited metabolic, biochemical changes and other related risk factors, which mainly affect the brain function. This study aimed to assess the effect of chronic alcohol-induced mitochondrial and synaptosomal oxidative damage along with behavioral impairment in adult zebrafish. Zebrafish of control group received the system water and normal diet <i>ad libitum</i> (group I); the other groups were treated with 0.20% alcohol (group II) and 0.40% alcohol (group III) directly in fish tank for 22 days. The result revealed significant increase in lipid peroxidation, protein carbonylation, superoxide dismutase, and glutathione, and significant decline in the activity of catalase and Na<sup>+</sup>/K<sup>+</sup> ATPase compared to control. Furthermore, the alcohol-treated zebrafish also showed significant behavioral alterations. Collectively, this regulatory mechanism demonstrates the effect of long-term alcohol consumption in the zebrafish. Our results indicate that this recreational drug \\\"alcohol\\\" is harmful to brain mitochondria and synaptosomes, which are the main organelles, and play an important role in memory, learning, cognitive function, and ATP formation in the brain, which may represent a significant public health concern.</p>\",\"PeriodicalId\":23872,\"journal\":{\"name\":\"Zebrafish\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zebrafish\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2020.1913\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2020.1913","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

酒精中毒会造成有害的影响,如生理和神经元的改变,从而导致认知和其他行为障碍。酗酒者脑内线粒体和突触体退化表现出代谢、生化变化等相关危险因素,主要影响脑功能。本研究旨在评估慢性酒精诱导的成年斑马鱼线粒体和突触体氧化损伤以及行为障碍的影响。对照组斑马鱼随意饲喂系统水和正常饲料(第一组);其余各组分别用0.20%酒精(II组)和0.40%酒精(III组)直接在鱼缸中处理22 d。结果显示,与对照组相比,脂质过氧化、蛋白质羰基化、超氧化物歧化酶和谷胱甘肽显著增加,过氧化氢酶和Na+/K+ atp酶活性显著下降。此外,酒精处理的斑马鱼也表现出显著的行为改变。总的来说,这种调节机制证明了斑马鱼长期饮酒的影响。我们的研究结果表明,这种娱乐性药物“酒精”对脑线粒体和突触体有害,它们是主要的细胞器,在大脑的记忆、学习、认知功能和ATP形成中起着重要作用,这可能是一个重大的公共卫生问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-Term Exposure of Alcohol Induced Behavioral Impairments and Oxidative Stress in the Brain Mitochondria and Synaptosomes of Adult Zebrafish.

Alcoholism causes deleterious effects such as physiological and neuronal alterations leading to the cognitive and other behavioral impairments. Mitochondrial and synaptosomal deteriorations in the brain of alcoholic persons exhibited metabolic, biochemical changes and other related risk factors, which mainly affect the brain function. This study aimed to assess the effect of chronic alcohol-induced mitochondrial and synaptosomal oxidative damage along with behavioral impairment in adult zebrafish. Zebrafish of control group received the system water and normal diet ad libitum (group I); the other groups were treated with 0.20% alcohol (group II) and 0.40% alcohol (group III) directly in fish tank for 22 days. The result revealed significant increase in lipid peroxidation, protein carbonylation, superoxide dismutase, and glutathione, and significant decline in the activity of catalase and Na+/K+ ATPase compared to control. Furthermore, the alcohol-treated zebrafish also showed significant behavioral alterations. Collectively, this regulatory mechanism demonstrates the effect of long-term alcohol consumption in the zebrafish. Our results indicate that this recreational drug "alcohol" is harmful to brain mitochondria and synaptosomes, which are the main organelles, and play an important role in memory, learning, cognitive function, and ATP formation in the brain, which may represent a significant public health concern.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
期刊最新文献
Fish in a Dish: Using Zebrafish in Authentic Science Research Experiences for Under-represented High School Students from West Virginia. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish (Danio rerio) Gynogenetic Production by Heat Shock: Comparison Between Mitotic and Meiotic Treatment. Curcumin-Encapsulated Nanomicelles Promote Tissue Regeneration in Zebrafish Eleutheroembryo. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1