{"title":"聚氯乙烯微塑料和细粒粘性沉积物在环境实际浓度下的絮凝作用。","authors":"Thorbjoern Joest Andersen, Stiffani Rominikan, Ida Stuhr Olsen, Kristoffer Hofer Skinnebach, Mikkel Fruergaard","doi":"10.1086/712929","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractMicroplastic particles have become ubiquitous in aquatic environments and can be found in large numbers in riverine, estuarine, and marine settings at the surface of water, in suspension, and as particles deposited at the bed. The transport and settling behavior of small microplastic particles is likely very dependent on interactions with other suspended particles. Here we show from settling tube experiments conducted in the laboratory that fragments and threads of polyvinylchloride microplastic in the size range of 63-125 <i>µ</i>m readily flocculated with fine-grained natural sediment under relative particle number concentrations that can be observed in nature in high-turbidity estuarine and coastal environments. The implication of this flocculation is that the microplastic particles are suspended and transported incorporated in aggregates that settle faster than the individual microplastic particles. This is causing a continuous sedimentation of microplastic particles in estuarine and marine settings, resulting in increased microplastic loading for benthic life in these environments.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"240 1","pages":"42-51"},"PeriodicalIF":2.1000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/712929","citationCount":"17","resultStr":"{\"title\":\"Flocculation of PVC Microplastic and Fine-Grained Cohesive Sediment at Environmentally Realistic Concentrations.\",\"authors\":\"Thorbjoern Joest Andersen, Stiffani Rominikan, Ida Stuhr Olsen, Kristoffer Hofer Skinnebach, Mikkel Fruergaard\",\"doi\":\"10.1086/712929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractMicroplastic particles have become ubiquitous in aquatic environments and can be found in large numbers in riverine, estuarine, and marine settings at the surface of water, in suspension, and as particles deposited at the bed. The transport and settling behavior of small microplastic particles is likely very dependent on interactions with other suspended particles. Here we show from settling tube experiments conducted in the laboratory that fragments and threads of polyvinylchloride microplastic in the size range of 63-125 <i>µ</i>m readily flocculated with fine-grained natural sediment under relative particle number concentrations that can be observed in nature in high-turbidity estuarine and coastal environments. The implication of this flocculation is that the microplastic particles are suspended and transported incorporated in aggregates that settle faster than the individual microplastic particles. This is causing a continuous sedimentation of microplastic particles in estuarine and marine settings, resulting in increased microplastic loading for benthic life in these environments.</p>\",\"PeriodicalId\":55376,\"journal\":{\"name\":\"Biological Bulletin\",\"volume\":\"240 1\",\"pages\":\"42-51\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1086/712929\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Bulletin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/712929\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/712929","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Flocculation of PVC Microplastic and Fine-Grained Cohesive Sediment at Environmentally Realistic Concentrations.
AbstractMicroplastic particles have become ubiquitous in aquatic environments and can be found in large numbers in riverine, estuarine, and marine settings at the surface of water, in suspension, and as particles deposited at the bed. The transport and settling behavior of small microplastic particles is likely very dependent on interactions with other suspended particles. Here we show from settling tube experiments conducted in the laboratory that fragments and threads of polyvinylchloride microplastic in the size range of 63-125 µm readily flocculated with fine-grained natural sediment under relative particle number concentrations that can be observed in nature in high-turbidity estuarine and coastal environments. The implication of this flocculation is that the microplastic particles are suspended and transported incorporated in aggregates that settle faster than the individual microplastic particles. This is causing a continuous sedimentation of microplastic particles in estuarine and marine settings, resulting in increased microplastic loading for benthic life in these environments.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.