Julie A. Klaric , David J. Glass, Eli L. Perr , Arianna D. Reuven , Mason J. Towne, Susan T. Lovett
{"title":"5-氮胞苷和DNA-蛋白交联诱导大肠杆菌DNA损伤信号、同源重组和基因突变","authors":"Julie A. Klaric , David J. Glass, Eli L. Perr , Arianna D. Reuven , Mason J. Towne, Susan T. Lovett","doi":"10.1016/j.mrfmmm.2021.111742","DOIUrl":null,"url":null,"abstract":"<div><p>Covalent linkage between DNA and proteins produces highly toxic lesions and can be caused by commonly used chemotherapeutic agents, by internal and external chemicals and by radiation. In this study, using <em>Escherichia coli</em>, we investigate the consequences of 5-azacytidine (5-azaC), which traps covalent complexes between itself and the Dcm cytosine methyltransferase protein. DNA protein crosslink-dependent effects can be ascertained by effects that arise in wild-type but not in <em>dcm</em>Δ strains. We find that 5-azaC induces the bacterial DNA damage response and stimulates homologous recombination, a component of which is Dcm-dependent. Template-switching at an imperfect inverted repeat (“quasipalindrome”, QP) is strongly enhanced by 5-azaC and this enhancement was entirely Dcm-dependent and independent of double-strand break repair. The SOS response helps ameliorate the mutagenic effect of 5-azaC but this is not a result of SOS-induced DNA polymerases since their induction, especially PolIV, seems to stimulate QP-associated mutagenesis. Cell division regulator SulA was also required for recovery of QP mutants induced by 5-azaC. In the absence of Lon protease, Dcm-dependent QP-mutagenesis is strongly elevated, suggesting it may play a role in DPC tolerance. Deletions at short tandem repeats, which occur likewise by a replication template-switch, are elevated, but only modestly, by 5-azaC. We see evidence for Dcm-dependent and-independent killing by 5-azaC in sensitive mutants, such as <em>recA</em>, <em>recB</em>, and <em>lon</em>; homologous recombination and deletion mutations are also stimulated in part by a Dcm-independent effect of 5-azaC. Whether this occurs by a different protein/DNA crosslink or by an alternative form of DNA damage is unknown</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"822 ","pages":"Article 111742"},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mrfmmm.2021.111742","citationCount":"0","resultStr":"{\"title\":\"DNA damage-signaling, homologous recombination and genetic mutation induced by 5-azacytidine and DNA-protein crosslinks in Escherichia coli\",\"authors\":\"Julie A. Klaric , David J. Glass, Eli L. Perr , Arianna D. Reuven , Mason J. Towne, Susan T. Lovett\",\"doi\":\"10.1016/j.mrfmmm.2021.111742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covalent linkage between DNA and proteins produces highly toxic lesions and can be caused by commonly used chemotherapeutic agents, by internal and external chemicals and by radiation. In this study, using <em>Escherichia coli</em>, we investigate the consequences of 5-azacytidine (5-azaC), which traps covalent complexes between itself and the Dcm cytosine methyltransferase protein. DNA protein crosslink-dependent effects can be ascertained by effects that arise in wild-type but not in <em>dcm</em>Δ strains. We find that 5-azaC induces the bacterial DNA damage response and stimulates homologous recombination, a component of which is Dcm-dependent. Template-switching at an imperfect inverted repeat (“quasipalindrome”, QP) is strongly enhanced by 5-azaC and this enhancement was entirely Dcm-dependent and independent of double-strand break repair. The SOS response helps ameliorate the mutagenic effect of 5-azaC but this is not a result of SOS-induced DNA polymerases since their induction, especially PolIV, seems to stimulate QP-associated mutagenesis. Cell division regulator SulA was also required for recovery of QP mutants induced by 5-azaC. In the absence of Lon protease, Dcm-dependent QP-mutagenesis is strongly elevated, suggesting it may play a role in DPC tolerance. Deletions at short tandem repeats, which occur likewise by a replication template-switch, are elevated, but only modestly, by 5-azaC. We see evidence for Dcm-dependent and-independent killing by 5-azaC in sensitive mutants, such as <em>recA</em>, <em>recB</em>, and <em>lon</em>; homologous recombination and deletion mutations are also stimulated in part by a Dcm-independent effect of 5-azaC. Whether this occurs by a different protein/DNA crosslink or by an alternative form of DNA damage is unknown</p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"822 \",\"pages\":\"Article 111742\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mrfmmm.2021.111742\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510721000051\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510721000051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
DNA damage-signaling, homologous recombination and genetic mutation induced by 5-azacytidine and DNA-protein crosslinks in Escherichia coli
Covalent linkage between DNA and proteins produces highly toxic lesions and can be caused by commonly used chemotherapeutic agents, by internal and external chemicals and by radiation. In this study, using Escherichia coli, we investigate the consequences of 5-azacytidine (5-azaC), which traps covalent complexes between itself and the Dcm cytosine methyltransferase protein. DNA protein crosslink-dependent effects can be ascertained by effects that arise in wild-type but not in dcmΔ strains. We find that 5-azaC induces the bacterial DNA damage response and stimulates homologous recombination, a component of which is Dcm-dependent. Template-switching at an imperfect inverted repeat (“quasipalindrome”, QP) is strongly enhanced by 5-azaC and this enhancement was entirely Dcm-dependent and independent of double-strand break repair. The SOS response helps ameliorate the mutagenic effect of 5-azaC but this is not a result of SOS-induced DNA polymerases since their induction, especially PolIV, seems to stimulate QP-associated mutagenesis. Cell division regulator SulA was also required for recovery of QP mutants induced by 5-azaC. In the absence of Lon protease, Dcm-dependent QP-mutagenesis is strongly elevated, suggesting it may play a role in DPC tolerance. Deletions at short tandem repeats, which occur likewise by a replication template-switch, are elevated, but only modestly, by 5-azaC. We see evidence for Dcm-dependent and-independent killing by 5-azaC in sensitive mutants, such as recA, recB, and lon; homologous recombination and deletion mutations are also stimulated in part by a Dcm-independent effect of 5-azaC. Whether this occurs by a different protein/DNA crosslink or by an alternative form of DNA damage is unknown
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.