肾形线虫基因组中两种全基因组扩增方法的重复序列表征。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Genomics Pub Date : 2021-03-06 eCollection Date: 2021-01-01 DOI:10.1155/2021/5532885
S T Nyaku, V R Sripathi, K Lawrence, G Sharma
{"title":"肾形线虫基因组中两种全基因组扩增方法的重复序列表征。","authors":"S T Nyaku,&nbsp;V R Sripathi,&nbsp;K Lawrence,&nbsp;G Sharma","doi":"10.1155/2021/5532885","DOIUrl":null,"url":null,"abstract":"<p><p>One of the major problems in the U.S. and global cotton production is the damage caused by the reniform nematode, <i>Rotylenchulus reniformis</i>. Amplification of DNA from single nematodes for further molecular analysis can be challenging sometimes. In this research, two whole-genome amplification (WGA) methods were evaluated for their efficiencies in DNA amplification from a single reniform nematode. The WGA was carried out using both REPLI-g Mini and Midi kits, and the GenomePlex single cell whole-genome amplification kit. Sequence analysis produced 4 Mb and 12 Mb of genomic sequences for the reniform nematode using REPLI-g and SIGMA libraries. These sequences were assembled into 28,784 and 24,508 contigs, respectively, for REPLI-g and SIGMA libraries. The highest repeats in both libraries were of low complexity, and the lowest for the REPLI-g library were for satellites and for the SIGMA library, RTE/BOV-B. The same kind of repeats were observed for both libraries; however, the SIGMA library had four other repeat elements (Penelope (long interspersed nucleotide element (LINE)), RTE/BOV-B (LINE), PiggyBac, and Mirage/P-element/Transib), which were not seen in the REPLI-g library. DNA transposons were also found in both libraries. Both reniform nematode 18S rRNA variants (RN_VAR1 and RN_VAR2) could easily be identified in both libraries. This research has therefore demonstrated the ability of using both WGA methods, in amplification of gDNA isolated from single reniform nematodes.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":"2021 ","pages":"5532885"},"PeriodicalIF":2.6000,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960049/pdf/","citationCount":"3","resultStr":"{\"title\":\"Characterizing Repeats in Two Whole-Genome Amplification Methods in the Reniform Nematode Genome.\",\"authors\":\"S T Nyaku,&nbsp;V R Sripathi,&nbsp;K Lawrence,&nbsp;G Sharma\",\"doi\":\"10.1155/2021/5532885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the major problems in the U.S. and global cotton production is the damage caused by the reniform nematode, <i>Rotylenchulus reniformis</i>. Amplification of DNA from single nematodes for further molecular analysis can be challenging sometimes. In this research, two whole-genome amplification (WGA) methods were evaluated for their efficiencies in DNA amplification from a single reniform nematode. The WGA was carried out using both REPLI-g Mini and Midi kits, and the GenomePlex single cell whole-genome amplification kit. Sequence analysis produced 4 Mb and 12 Mb of genomic sequences for the reniform nematode using REPLI-g and SIGMA libraries. These sequences were assembled into 28,784 and 24,508 contigs, respectively, for REPLI-g and SIGMA libraries. The highest repeats in both libraries were of low complexity, and the lowest for the REPLI-g library were for satellites and for the SIGMA library, RTE/BOV-B. The same kind of repeats were observed for both libraries; however, the SIGMA library had four other repeat elements (Penelope (long interspersed nucleotide element (LINE)), RTE/BOV-B (LINE), PiggyBac, and Mirage/P-element/Transib), which were not seen in the REPLI-g library. DNA transposons were also found in both libraries. Both reniform nematode 18S rRNA variants (RN_VAR1 and RN_VAR2) could easily be identified in both libraries. This research has therefore demonstrated the ability of using both WGA methods, in amplification of gDNA isolated from single reniform nematodes.</p>\",\"PeriodicalId\":13988,\"journal\":{\"name\":\"International Journal of Genomics\",\"volume\":\"2021 \",\"pages\":\"5532885\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960049/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5532885\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2021/5532885","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

美国和全球棉花生产面临的主要问题之一是肾形线虫(Rotylenchulus reniformis)造成的损害。从单个线虫中扩增DNA以进行进一步的分子分析有时是具有挑战性的。在这项研究中,评估了两种全基因组扩增(WGA)方法在单个肾形线虫DNA扩增中的效率。WGA采用pli -g Mini和Midi试剂盒以及GenomePlex单细胞全基因组扩增试剂盒进行。序列分析利用REPLI-g和SIGMA文库分别获得了4mb和12mb的形线虫基因组序列。这些序列分别被组装成28,784和24,508个contigs,用于REPLI-g和SIGMA文库。这两个文库中重复次数最多的是低复杂度文库,重复次数最少的是卫星文库和SIGMA文库RTE/BOV-B。在两个文库中观察到相同的重复序列;然而,SIGMA文库中有另外四个重复元件(Penelope (long interspersed nucleotide element (LINE))、RTE/BOV-B (LINE)、PiggyBac和Mirage/P-element/Transib),这些在REPLI-g文库中未见。在两个文库中也发现了DNA转座子。在这两个文库中都可以很容易地鉴定出肾形线虫18S rRNA变体(RN_VAR1和RN_VAR2)。因此,该研究证明了使用两种WGA方法扩增从单个肾形线虫中分离的gDNA的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing Repeats in Two Whole-Genome Amplification Methods in the Reniform Nematode Genome.

One of the major problems in the U.S. and global cotton production is the damage caused by the reniform nematode, Rotylenchulus reniformis. Amplification of DNA from single nematodes for further molecular analysis can be challenging sometimes. In this research, two whole-genome amplification (WGA) methods were evaluated for their efficiencies in DNA amplification from a single reniform nematode. The WGA was carried out using both REPLI-g Mini and Midi kits, and the GenomePlex single cell whole-genome amplification kit. Sequence analysis produced 4 Mb and 12 Mb of genomic sequences for the reniform nematode using REPLI-g and SIGMA libraries. These sequences were assembled into 28,784 and 24,508 contigs, respectively, for REPLI-g and SIGMA libraries. The highest repeats in both libraries were of low complexity, and the lowest for the REPLI-g library were for satellites and for the SIGMA library, RTE/BOV-B. The same kind of repeats were observed for both libraries; however, the SIGMA library had four other repeat elements (Penelope (long interspersed nucleotide element (LINE)), RTE/BOV-B (LINE), PiggyBac, and Mirage/P-element/Transib), which were not seen in the REPLI-g library. DNA transposons were also found in both libraries. Both reniform nematode 18S rRNA variants (RN_VAR1 and RN_VAR2) could easily be identified in both libraries. This research has therefore demonstrated the ability of using both WGA methods, in amplification of gDNA isolated from single reniform nematodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Genomics
International Journal of Genomics BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
5.40
自引率
0.00%
发文量
33
审稿时长
17 weeks
期刊介绍: International Journal of Genomics is a peer-reviewed, Open Access journal that publishes research articles as well as review articles in all areas of genome-scale analysis. Topics covered by the journal include, but are not limited to: bioinformatics, clinical genomics, disease genomics, epigenomics, evolutionary genomics, functional genomics, genome engineering, and synthetic genomics.
期刊最新文献
Transcription Analysis of the THBS2 Gene through Regulation by Potential Noncoding Diagnostic Biomarkers and Oncogenes of Gastric Cancer in the ECM-Receptor Interaction Signaling Pathway: Integrated System Biology and Experimental Investigation Transmembrane and Ubiquitin-Like Domain-Containing 1 Promotes Glioma Growth and Indicates Unfavorable Prognosis Validation of a Proteomic-Based Prognostic Model for Breast Cancer and Immunological Analysis The Oncogenic Role of KLF7 in Colon Adenocarcinoma and Therapeutic Perspectives CTSK and PLAU as Prognostic Biomarker and Related to Immune Infiltration in Pancreatic Cancer: Evidence from Bioinformatics Analysis and qPCR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1