唐氏综合征Ts65Dn小鼠模型中导致学习和记忆缺陷的信号通路

Q4 Neuroscience Neuronal signaling Pub Date : 2021-03-12 eCollection Date: 2021-04-01 DOI:10.1042/NS20200011
Aimée Freeburn, Robert Gordon Keith Munn
{"title":"唐氏综合征Ts65Dn小鼠模型中导致学习和记忆缺陷的信号通路","authors":"Aimée Freeburn,&nbsp;Robert Gordon Keith Munn","doi":"10.1042/NS20200011","DOIUrl":null,"url":null,"abstract":"<p><p>Down syndrome (DS) is a genetic trisomic disorder that produces life-long changes in physiology and cognition. Many of the changes in learning and memory seen in DS are reminiscent of disorders involving the hippocampal/entorhinal circuit. Mouse models of DS typically involve trisomy of murine chromosome 16 is homologous for many of the genes triplicated in human trisomy 21, and provide us with good models of changes in, and potential pharmacotherapy for, human DS. Recent careful dissection of the Ts65Dn mouse model of DS has revealed differences in key signalling pathways from the basal forebrain to the hippocampus and associated rhinal cortices, as well as changes in the microstructure of the hippocampus itself. <i>In vivo</i> behavioural and electrophysiological studies have shown that Ts65Dn animals have difficulties in spatial memory that mirror hippocampal deficits, and have changes in hippocampal electrophysiological phenomenology that may explain these differences, and align with expectations generated from <i>in vitro</i> exploration of this model. Finally, given the existing data, we will examine the possibility for pharmacotherapy for DS, and outline the work that remains to be done to fully understand this system.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955101/pdf/","citationCount":"4","resultStr":"{\"title\":\"Signalling pathways contributing to learning and memory deficits in the Ts65Dn mouse model of Down syndrome.\",\"authors\":\"Aimée Freeburn,&nbsp;Robert Gordon Keith Munn\",\"doi\":\"10.1042/NS20200011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Down syndrome (DS) is a genetic trisomic disorder that produces life-long changes in physiology and cognition. Many of the changes in learning and memory seen in DS are reminiscent of disorders involving the hippocampal/entorhinal circuit. Mouse models of DS typically involve trisomy of murine chromosome 16 is homologous for many of the genes triplicated in human trisomy 21, and provide us with good models of changes in, and potential pharmacotherapy for, human DS. Recent careful dissection of the Ts65Dn mouse model of DS has revealed differences in key signalling pathways from the basal forebrain to the hippocampus and associated rhinal cortices, as well as changes in the microstructure of the hippocampus itself. <i>In vivo</i> behavioural and electrophysiological studies have shown that Ts65Dn animals have difficulties in spatial memory that mirror hippocampal deficits, and have changes in hippocampal electrophysiological phenomenology that may explain these differences, and align with expectations generated from <i>in vitro</i> exploration of this model. Finally, given the existing data, we will examine the possibility for pharmacotherapy for DS, and outline the work that remains to be done to fully understand this system.</p>\",\"PeriodicalId\":74287,\"journal\":{\"name\":\"Neuronal signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955101/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuronal signaling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/NS20200011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuronal signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/NS20200011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 4

摘要

唐氏综合症(DS)是一种遗传性三体疾病,会导致生理和认知方面的终身变化。退行性椎体滑移患者在学习和记忆方面的许多变化都与海马/内嗅回路紊乱有关。小鼠退行性变性模型通常涉及小鼠16号染色体三体与人类21号染色体三倍体中的许多基因同源,这为我们提供了人类退行性变性变化和潜在药物治疗的良好模型。最近对Ts65Dn小鼠DS模型的仔细解剖揭示了从基底前脑到海马和相关鼻皮质的关键信号通路的差异,以及海马本身微观结构的变化。体内行为和电生理研究表明,Ts65Dn动物在空间记忆方面存在困难,这反映了海马的缺陷,并且海马电生理现象的变化可能解释了这些差异,并符合该模型体外探索产生的期望。最后,根据现有的数据,我们将研究退行性椎体滑移的药物治疗的可能性,并概述为充分了解这一系统而需要做的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Signalling pathways contributing to learning and memory deficits in the Ts65Dn mouse model of Down syndrome.

Down syndrome (DS) is a genetic trisomic disorder that produces life-long changes in physiology and cognition. Many of the changes in learning and memory seen in DS are reminiscent of disorders involving the hippocampal/entorhinal circuit. Mouse models of DS typically involve trisomy of murine chromosome 16 is homologous for many of the genes triplicated in human trisomy 21, and provide us with good models of changes in, and potential pharmacotherapy for, human DS. Recent careful dissection of the Ts65Dn mouse model of DS has revealed differences in key signalling pathways from the basal forebrain to the hippocampus and associated rhinal cortices, as well as changes in the microstructure of the hippocampus itself. In vivo behavioural and electrophysiological studies have shown that Ts65Dn animals have difficulties in spatial memory that mirror hippocampal deficits, and have changes in hippocampal electrophysiological phenomenology that may explain these differences, and align with expectations generated from in vitro exploration of this model. Finally, given the existing data, we will examine the possibility for pharmacotherapy for DS, and outline the work that remains to be done to fully understand this system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Neural mechanisms of dopamine function in learning and memory in Caenorhabditis elegans Cytokine activity in Parkinson's disease. Modelling Alzheimer’s disease in a Dish – Dissecting Amyloid-β Metabolism in Human Neurons Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders Inhibition of insulin-degrading enzyme in human neurons promotes amyloid-β deposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1