Sherwin Shabdar, Bukuru Anaclet, Ana Garcia Castineiras, Neyissa Desir, Nicholas Choe, Edward J Crane, Matthew H Sazinsky
{"title":"嗜热型 NADH 依赖性过硫化物还原酶的结构和动力学特征","authors":"Sherwin Shabdar, Bukuru Anaclet, Ana Garcia Castineiras, Neyissa Desir, Nicholas Choe, Edward J Crane, Matthew H Sazinsky","doi":"10.1155/2021/8817136","DOIUrl":null,"url":null,"abstract":"<p><p>NADH-dependent persulfide reductase (Npsr) has been proposed to facilitate dissimilatory sulfur respiration by reducing persulfide or sulfane sulfur-containing substrates to H<sub>2</sub>S. The presence of this gene in the sulfate and thiosulfate-reducing <i>Archaeoglobus fulgidus</i> DSM 4304 and other hyperthermophilic <i>Archaeoglobales</i> appears anomalous, as <i>A. fulgidus</i> is unable to respire S<sup>0</sup> and grow in the presence of elemental sulfur. To assess the role of Npsr in the sulfur metabolism of <i>A. fulgidus</i> DSM 4304, the Npsr from <i>A. fulgidus</i> was characterized. AfNpsr is specific for persulfide and polysulfide as substrates in the oxidative half-reaction, exhibiting <i>k</i> <sub>cat</sub>/<i>K</i> <sub>m</sub> on the order of 10<sup>4</sup> M<sup>-1</sup> s<sup>-1</sup>, which is similar to the kinetic parameters observed for hyperthermophilic CoA persulfide reductases. In contrast to the bacterial Npsr, AfNpsr exhibits low disulfide reductase activity with DTNB; however, similar to the bacterial enzymes, it does not show detectable activity with CoA-disulfide, oxidized glutathione, or cystine. The 3.1 Å X-ray structure of AfNpsr reveals access to the tightly bound catalytic CoA, and the active site Cys 42 is restricted by a flexible loop (residues 60-66) that is not seen in the bacterial homologs from <i>Shewanella loihica PV-4</i> and <i>Bacillus anthracis</i>. Unlike the bacterial enzymes, AfNpsr exhibits NADH oxidase activity and also shows no detectable activity with NADPH. Models suggest steric and electrostatic repulsions of the NADPH 2'-phosphate account for the strong preference for NADH. The presence of Npsr in the nonsulfur-reducing <i>A. fulgidus</i> suggests that the enzyme may offer some protection against S<sup>0</sup> or serve in another metabolic role that has yet to be identified.</p>","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":"2021 ","pages":"8817136"},"PeriodicalIF":2.3000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969121/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural and Kinetic Characterization of Hyperthermophilic NADH-Dependent Persulfide Reductase from <i>Archaeoglobus fulgidus</i>.\",\"authors\":\"Sherwin Shabdar, Bukuru Anaclet, Ana Garcia Castineiras, Neyissa Desir, Nicholas Choe, Edward J Crane, Matthew H Sazinsky\",\"doi\":\"10.1155/2021/8817136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NADH-dependent persulfide reductase (Npsr) has been proposed to facilitate dissimilatory sulfur respiration by reducing persulfide or sulfane sulfur-containing substrates to H<sub>2</sub>S. The presence of this gene in the sulfate and thiosulfate-reducing <i>Archaeoglobus fulgidus</i> DSM 4304 and other hyperthermophilic <i>Archaeoglobales</i> appears anomalous, as <i>A. fulgidus</i> is unable to respire S<sup>0</sup> and grow in the presence of elemental sulfur. To assess the role of Npsr in the sulfur metabolism of <i>A. fulgidus</i> DSM 4304, the Npsr from <i>A. fulgidus</i> was characterized. AfNpsr is specific for persulfide and polysulfide as substrates in the oxidative half-reaction, exhibiting <i>k</i> <sub>cat</sub>/<i>K</i> <sub>m</sub> on the order of 10<sup>4</sup> M<sup>-1</sup> s<sup>-1</sup>, which is similar to the kinetic parameters observed for hyperthermophilic CoA persulfide reductases. In contrast to the bacterial Npsr, AfNpsr exhibits low disulfide reductase activity with DTNB; however, similar to the bacterial enzymes, it does not show detectable activity with CoA-disulfide, oxidized glutathione, or cystine. The 3.1 Å X-ray structure of AfNpsr reveals access to the tightly bound catalytic CoA, and the active site Cys 42 is restricted by a flexible loop (residues 60-66) that is not seen in the bacterial homologs from <i>Shewanella loihica PV-4</i> and <i>Bacillus anthracis</i>. Unlike the bacterial enzymes, AfNpsr exhibits NADH oxidase activity and also shows no detectable activity with NADPH. Models suggest steric and electrostatic repulsions of the NADPH 2'-phosphate account for the strong preference for NADH. The presence of Npsr in the nonsulfur-reducing <i>A. fulgidus</i> suggests that the enzyme may offer some protection against S<sup>0</sup> or serve in another metabolic role that has yet to be identified.</p>\",\"PeriodicalId\":49105,\"journal\":{\"name\":\"Archaea-An International Microbiological Journal\",\"volume\":\"2021 \",\"pages\":\"8817136\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archaea-An International Microbiological Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/8817136\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaea-An International Microbiological Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2021/8817136","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Structural and Kinetic Characterization of Hyperthermophilic NADH-Dependent Persulfide Reductase from Archaeoglobus fulgidus.
NADH-dependent persulfide reductase (Npsr) has been proposed to facilitate dissimilatory sulfur respiration by reducing persulfide or sulfane sulfur-containing substrates to H2S. The presence of this gene in the sulfate and thiosulfate-reducing Archaeoglobus fulgidus DSM 4304 and other hyperthermophilic Archaeoglobales appears anomalous, as A. fulgidus is unable to respire S0 and grow in the presence of elemental sulfur. To assess the role of Npsr in the sulfur metabolism of A. fulgidus DSM 4304, the Npsr from A. fulgidus was characterized. AfNpsr is specific for persulfide and polysulfide as substrates in the oxidative half-reaction, exhibiting kcat/Km on the order of 104 M-1 s-1, which is similar to the kinetic parameters observed for hyperthermophilic CoA persulfide reductases. In contrast to the bacterial Npsr, AfNpsr exhibits low disulfide reductase activity with DTNB; however, similar to the bacterial enzymes, it does not show detectable activity with CoA-disulfide, oxidized glutathione, or cystine. The 3.1 Å X-ray structure of AfNpsr reveals access to the tightly bound catalytic CoA, and the active site Cys 42 is restricted by a flexible loop (residues 60-66) that is not seen in the bacterial homologs from Shewanella loihica PV-4 and Bacillus anthracis. Unlike the bacterial enzymes, AfNpsr exhibits NADH oxidase activity and also shows no detectable activity with NADPH. Models suggest steric and electrostatic repulsions of the NADPH 2'-phosphate account for the strong preference for NADH. The presence of Npsr in the nonsulfur-reducing A. fulgidus suggests that the enzyme may offer some protection against S0 or serve in another metabolic role that has yet to be identified.
期刊介绍:
Archaea is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles dealing with all aspects of archaea, including environmental adaptation, enzymology, genetics and genomics, metabolism, molecular biology, molecular ecology, phylogeny, and ultrastructure. Bioinformatics studies and biotechnological implications of archaea will be considered. Published since 2002, Archaea provides a unique venue for exchanging information about these extraordinary prokaryotes.