利用图像处理和机器学习从胸部x光片中识别COVID-19的自动化快速系统

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2021-03-01 DOI:10.1002/ima.22564
Murtaza Ali Khan
{"title":"利用图像处理和机器学习从胸部x光片中识别COVID-19的自动化快速系统","authors":"Murtaza Ali Khan","doi":"10.1002/ima.22564","DOIUrl":null,"url":null,"abstract":"<p>A type of coronavirus disease called COVID-19 is spreading all over the globe. Researchers and scientists are endeavoring to find new and effective methods to diagnose and treat this disease. This article presents an automated and fast system that identifies COVID-19 from X-ray radiographs of the chest using image processing and machine learning algorithms. Initially, the system extracts the feature descriptors from the radiographs of both healthy and COVID-19 affected patients using the speeded up robust features algorithm. Then, visual vocabulary is built by reducing the number of feature descriptors via quantization of feature space using the K-means clustering algorithm. The visual vocabulary train the support vector machine (SVM) classifier. During testing, an X-ray radiograph's visual vocabulary is sent to the trained SVM classifier to detect the absence or presence of COVID-19. The study used the dataset of 340 X-ray radiographs, 170 images of each Healthy and Positive COVID-19 class. During simulations, the dataset split into training and testing parts at various ratios. After training, the system does not require any human intervention and can process thousands of images with high precision in a few minutes. The performance of the system is measured using standard parameters of accuracy and confusion matrix. We compared the performance of the proposed SVM-based classier with the deep-learning-based convolutional neural networks (CNN). The SVM yields better results than CNN and achieves a maximum accuracy of up to 94.12%.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"31 2","pages":"499-508"},"PeriodicalIF":3.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ima.22564","citationCount":"12","resultStr":"{\"title\":\"An automated and fast system to identify COVID-19 from X-ray radiograph of the chest using image processing and machine learning\",\"authors\":\"Murtaza Ali Khan\",\"doi\":\"10.1002/ima.22564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A type of coronavirus disease called COVID-19 is spreading all over the globe. Researchers and scientists are endeavoring to find new and effective methods to diagnose and treat this disease. This article presents an automated and fast system that identifies COVID-19 from X-ray radiographs of the chest using image processing and machine learning algorithms. Initially, the system extracts the feature descriptors from the radiographs of both healthy and COVID-19 affected patients using the speeded up robust features algorithm. Then, visual vocabulary is built by reducing the number of feature descriptors via quantization of feature space using the K-means clustering algorithm. The visual vocabulary train the support vector machine (SVM) classifier. During testing, an X-ray radiograph's visual vocabulary is sent to the trained SVM classifier to detect the absence or presence of COVID-19. The study used the dataset of 340 X-ray radiographs, 170 images of each Healthy and Positive COVID-19 class. During simulations, the dataset split into training and testing parts at various ratios. After training, the system does not require any human intervention and can process thousands of images with high precision in a few minutes. The performance of the system is measured using standard parameters of accuracy and confusion matrix. We compared the performance of the proposed SVM-based classier with the deep-learning-based convolutional neural networks (CNN). The SVM yields better results than CNN and achieves a maximum accuracy of up to 94.12%.</p>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"31 2\",\"pages\":\"499-508\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ima.22564\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.22564\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22564","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 12

摘要

一种名为COVID-19的冠状病毒疾病正在全球蔓延。研究人员和科学家正在努力寻找新的和有效的方法来诊断和治疗这种疾病。本文介绍了一种使用图像处理和机器学习算法从胸部x射线片中识别COVID-19的自动化快速系统。首先,系统使用加速鲁棒特征算法从健康和COVID-19患者的x线片中提取特征描述符。然后,利用k均值聚类算法对特征空间进行量化,减少特征描述符的数量,构建视觉词汇表;视觉词汇训练支持向量机分类器。在测试过程中,x光片的视觉词汇被发送到训练好的SVM分类器中,以检测是否存在COVID-19。该研究使用了340张x射线片的数据集,其中包括健康和阳性COVID-19类别各170张图像。在模拟过程中,数据集以不同的比例分成训练部分和测试部分。经过训练,该系统不需要任何人为干预,可以在几分钟内高精度地处理数千张图像。采用精度和混淆矩阵的标准参数对系统的性能进行了测量。我们将提出的基于svm的分类器与基于深度学习的卷积神经网络(CNN)的性能进行了比较。SVM的结果优于CNN,最大准确率可达94.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An automated and fast system to identify COVID-19 from X-ray radiograph of the chest using image processing and machine learning

A type of coronavirus disease called COVID-19 is spreading all over the globe. Researchers and scientists are endeavoring to find new and effective methods to diagnose and treat this disease. This article presents an automated and fast system that identifies COVID-19 from X-ray radiographs of the chest using image processing and machine learning algorithms. Initially, the system extracts the feature descriptors from the radiographs of both healthy and COVID-19 affected patients using the speeded up robust features algorithm. Then, visual vocabulary is built by reducing the number of feature descriptors via quantization of feature space using the K-means clustering algorithm. The visual vocabulary train the support vector machine (SVM) classifier. During testing, an X-ray radiograph's visual vocabulary is sent to the trained SVM classifier to detect the absence or presence of COVID-19. The study used the dataset of 340 X-ray radiographs, 170 images of each Healthy and Positive COVID-19 class. During simulations, the dataset split into training and testing parts at various ratios. After training, the system does not require any human intervention and can process thousands of images with high precision in a few minutes. The performance of the system is measured using standard parameters of accuracy and confusion matrix. We compared the performance of the proposed SVM-based classier with the deep-learning-based convolutional neural networks (CNN). The SVM yields better results than CNN and achieves a maximum accuracy of up to 94.12%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging CATNet: A Cross Attention and Texture-Aware Network for Polyp Segmentation VMC-UNet: A Vision Mamba-CNN U-Net for Tumor Segmentation in Breast Ultrasound Image Suppression of the Tissue Component With the Total Least-Squares Algorithm to Improve Second Harmonic Imaging of Ultrasound Contrast Agents Segmentation and Classification of Breast Masses From the Whole Mammography Images Using Transfer Learning and BI-RADS Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1