基于促性腺激素释放激素拮抗剂(ganirelix)在注射制剂中的应激降解行为,采用HPLC和LC-MS-QTOF建立了经过验证的稳定性指示纯度方法。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-04-01 Epub Date: 2021-04-07 DOI:10.1177/14690667211005335
Kumarswamy Ummiti, J V Shanmukha Kumar
{"title":"基于促性腺激素释放激素拮抗剂(ganirelix)在注射制剂中的应激降解行为,采用HPLC和LC-MS-QTOF建立了经过验证的稳定性指示纯度方法。","authors":"Kumarswamy Ummiti,&nbsp;J V Shanmukha Kumar","doi":"10.1177/14690667211005335","DOIUrl":null,"url":null,"abstract":"<p><p>Stress study of a drug substance or pharmaceutical drug product provides a vision into degradation pathways and degradation products of the active pharmaceutical ingredient and helps in interpretation of the chemical structure of the degradation impurities. In the current study, Ganirelix active ingredient presented in the Orgalutran® was stressed with acidic and alkali hydrolysis, photolysis, thermal and oxidation conditions as per the guidelines of International Conference on Harmonization (ICH) Q1A (R2). Ganirelix was found to be labile under thermal and alkali hydrolytic stress conditions, while it was stable to acid hydrolytic, oxidative and photolytic stress. All degradation products were separated with a resolution > 1.5 on a C18 column (2.6 µm, 25 cm×4.6 mm) using a hydrophilic ion pair such as sodium perchlorate, at a concentration <0.04 M. In total, four major degradant impurities were found during stress study. These impurities were fractionated and desalted by flash chromatography for identification of chemical structures. LC-MS-QTOF analysis revealed that two degradation products are diastereomers of Ganirelix, one degradation product is a deamination compound and other degradation product result from the insertion of a new amino acid residue in the Ganirelix peptide sequence. The developed method is sensitive enough to quantify the related substances of Ganirelix at the 0.04% level with that of Ganirelix test concentration.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/14690667211005335","citationCount":"3","resultStr":"{\"title\":\"Establishment of validated stability indicating purity method based on the stress degradation behavior of gonadotropin-releasing hormone antagonist (ganirelix) in an injectable formulation using HPLC and LC-MS-QTOF.\",\"authors\":\"Kumarswamy Ummiti,&nbsp;J V Shanmukha Kumar\",\"doi\":\"10.1177/14690667211005335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stress study of a drug substance or pharmaceutical drug product provides a vision into degradation pathways and degradation products of the active pharmaceutical ingredient and helps in interpretation of the chemical structure of the degradation impurities. In the current study, Ganirelix active ingredient presented in the Orgalutran® was stressed with acidic and alkali hydrolysis, photolysis, thermal and oxidation conditions as per the guidelines of International Conference on Harmonization (ICH) Q1A (R2). Ganirelix was found to be labile under thermal and alkali hydrolytic stress conditions, while it was stable to acid hydrolytic, oxidative and photolytic stress. All degradation products were separated with a resolution > 1.5 on a C18 column (2.6 µm, 25 cm×4.6 mm) using a hydrophilic ion pair such as sodium perchlorate, at a concentration <0.04 M. In total, four major degradant impurities were found during stress study. These impurities were fractionated and desalted by flash chromatography for identification of chemical structures. LC-MS-QTOF analysis revealed that two degradation products are diastereomers of Ganirelix, one degradation product is a deamination compound and other degradation product result from the insertion of a new amino acid residue in the Ganirelix peptide sequence. The developed method is sensitive enough to quantify the related substances of Ganirelix at the 0.04% level with that of Ganirelix test concentration.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/14690667211005335\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/14690667211005335\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667211005335","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

对原料药或药品的应力研究提供了对活性药物成分的降解途径和降解产物的认识,并有助于解释降解杂质的化学结构。在本研究中,根据国际协调会议(ICH) Q1A (R2)的指导方针,在Orgalutran®中提出的Ganirelix活性成分在酸碱水解、光解、热和氧化条件下进行了强调。甘尼瑞克在热和碱水解条件下不稳定,而在酸水解、氧化和光解条件下稳定。所有降解产物在C18柱(2.6µm, 25 cm×4.6 mm)上分离,分辨率> 1.5,使用亲水性离子对,如高氯酸钠,在一定浓度下
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishment of validated stability indicating purity method based on the stress degradation behavior of gonadotropin-releasing hormone antagonist (ganirelix) in an injectable formulation using HPLC and LC-MS-QTOF.

Stress study of a drug substance or pharmaceutical drug product provides a vision into degradation pathways and degradation products of the active pharmaceutical ingredient and helps in interpretation of the chemical structure of the degradation impurities. In the current study, Ganirelix active ingredient presented in the Orgalutran® was stressed with acidic and alkali hydrolysis, photolysis, thermal and oxidation conditions as per the guidelines of International Conference on Harmonization (ICH) Q1A (R2). Ganirelix was found to be labile under thermal and alkali hydrolytic stress conditions, while it was stable to acid hydrolytic, oxidative and photolytic stress. All degradation products were separated with a resolution > 1.5 on a C18 column (2.6 µm, 25 cm×4.6 mm) using a hydrophilic ion pair such as sodium perchlorate, at a concentration <0.04 M. In total, four major degradant impurities were found during stress study. These impurities were fractionated and desalted by flash chromatography for identification of chemical structures. LC-MS-QTOF analysis revealed that two degradation products are diastereomers of Ganirelix, one degradation product is a deamination compound and other degradation product result from the insertion of a new amino acid residue in the Ganirelix peptide sequence. The developed method is sensitive enough to quantify the related substances of Ganirelix at the 0.04% level with that of Ganirelix test concentration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1