{"title":"可量化呼吸模式成分的变化预测哮喘控制:一项观察性横断面研究。","authors":"Panagiotis Sakkatos, Anne Bruton, Anna Barney","doi":"10.1186/s40733-021-00071-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breathing pattern disorders are frequently reported in uncontrolled asthma. At present, this is primarily assessed by questionnaires, which are subjective. Objective measures of breathing pattern components may provide additional useful information about asthma control. This study examined whether respiratory timing parameters and thoracoabdominal (TA) motion measures could predict and classify levels of asthma control.</p><p><strong>Methods: </strong>One hundred twenty-two asthma patients at STEP 2- STEP 5 GINA asthma medication were enrolled. Asthma control was determined by the Asthma Control Questionnaire (ACQ7-item) and patients divided into 'well controlled' or 'uncontrolled' groups. Breathing pattern components (respiratory rate (RR), ratio of inspiration duration to expiration duration (Ti/Te), ratio of ribcage amplitude over abdominal amplitude during expiration phase (RCampe/ABampe), were measured using Structured Light Plethysmography (SLP) in a sitting position for 5-min. Breath-by-breath analysis was performed to extract mean values and within-subject variability (measured by the Coefficient of Variance (CoV%). Binary multiple logistic regression was used to test whether breathing pattern components are predictive of asthma control. A post-hoc analysis determined the discriminant accuracy of any statistically significant predictive model.</p><p><strong>Results: </strong>Fifty-nine out of 122 asthma patients had an ACQ7-item < 0.75 (well-controlled asthma) with the rest being uncontrolled (n = 63). The absolute mean values of breathing pattern components did not predict asthma control (R<sup>2</sup> = 0.09) with only mean RR being a significant predictor (p < 0.01). The CoV% of the examined breathing components did predict asthma control (R<sup>2</sup> = 0.45) with all predictors having significant odds ratios (p < 0.01). The ROC curve showed that cut-off points > 7.40% for the COV% of the RR, > 21.66% for the CoV% of Ti/Te and > 18.78% for the CoV% of RCampe/ABampe indicated uncontrolled asthma.</p><p><strong>Conclusion: </strong>The within-subject variability of timing parameters and TA motion can be used to predict asthma control. Higher breathing pattern variability was associated with uncontrolled asthma suggesting that irregular resting breathing can be an indicator of poor asthma control.</p>","PeriodicalId":8572,"journal":{"name":"Asthma research and practice","volume":"7 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40733-021-00071-3","citationCount":"0","resultStr":"{\"title\":\"Changes in quantifiable breathing pattern components predict asthma control: an observational cross-sectional study.\",\"authors\":\"Panagiotis Sakkatos, Anne Bruton, Anna Barney\",\"doi\":\"10.1186/s40733-021-00071-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Breathing pattern disorders are frequently reported in uncontrolled asthma. At present, this is primarily assessed by questionnaires, which are subjective. Objective measures of breathing pattern components may provide additional useful information about asthma control. This study examined whether respiratory timing parameters and thoracoabdominal (TA) motion measures could predict and classify levels of asthma control.</p><p><strong>Methods: </strong>One hundred twenty-two asthma patients at STEP 2- STEP 5 GINA asthma medication were enrolled. Asthma control was determined by the Asthma Control Questionnaire (ACQ7-item) and patients divided into 'well controlled' or 'uncontrolled' groups. Breathing pattern components (respiratory rate (RR), ratio of inspiration duration to expiration duration (Ti/Te), ratio of ribcage amplitude over abdominal amplitude during expiration phase (RCampe/ABampe), were measured using Structured Light Plethysmography (SLP) in a sitting position for 5-min. Breath-by-breath analysis was performed to extract mean values and within-subject variability (measured by the Coefficient of Variance (CoV%). Binary multiple logistic regression was used to test whether breathing pattern components are predictive of asthma control. A post-hoc analysis determined the discriminant accuracy of any statistically significant predictive model.</p><p><strong>Results: </strong>Fifty-nine out of 122 asthma patients had an ACQ7-item < 0.75 (well-controlled asthma) with the rest being uncontrolled (n = 63). The absolute mean values of breathing pattern components did not predict asthma control (R<sup>2</sup> = 0.09) with only mean RR being a significant predictor (p < 0.01). The CoV% of the examined breathing components did predict asthma control (R<sup>2</sup> = 0.45) with all predictors having significant odds ratios (p < 0.01). The ROC curve showed that cut-off points > 7.40% for the COV% of the RR, > 21.66% for the CoV% of Ti/Te and > 18.78% for the CoV% of RCampe/ABampe indicated uncontrolled asthma.</p><p><strong>Conclusion: </strong>The within-subject variability of timing parameters and TA motion can be used to predict asthma control. Higher breathing pattern variability was associated with uncontrolled asthma suggesting that irregular resting breathing can be an indicator of poor asthma control.</p>\",\"PeriodicalId\":8572,\"journal\":{\"name\":\"Asthma research and practice\",\"volume\":\"7 1\",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40733-021-00071-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asthma research and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40733-021-00071-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asthma research and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40733-021-00071-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Changes in quantifiable breathing pattern components predict asthma control: an observational cross-sectional study.
Background: Breathing pattern disorders are frequently reported in uncontrolled asthma. At present, this is primarily assessed by questionnaires, which are subjective. Objective measures of breathing pattern components may provide additional useful information about asthma control. This study examined whether respiratory timing parameters and thoracoabdominal (TA) motion measures could predict and classify levels of asthma control.
Methods: One hundred twenty-two asthma patients at STEP 2- STEP 5 GINA asthma medication were enrolled. Asthma control was determined by the Asthma Control Questionnaire (ACQ7-item) and patients divided into 'well controlled' or 'uncontrolled' groups. Breathing pattern components (respiratory rate (RR), ratio of inspiration duration to expiration duration (Ti/Te), ratio of ribcage amplitude over abdominal amplitude during expiration phase (RCampe/ABampe), were measured using Structured Light Plethysmography (SLP) in a sitting position for 5-min. Breath-by-breath analysis was performed to extract mean values and within-subject variability (measured by the Coefficient of Variance (CoV%). Binary multiple logistic regression was used to test whether breathing pattern components are predictive of asthma control. A post-hoc analysis determined the discriminant accuracy of any statistically significant predictive model.
Results: Fifty-nine out of 122 asthma patients had an ACQ7-item < 0.75 (well-controlled asthma) with the rest being uncontrolled (n = 63). The absolute mean values of breathing pattern components did not predict asthma control (R2 = 0.09) with only mean RR being a significant predictor (p < 0.01). The CoV% of the examined breathing components did predict asthma control (R2 = 0.45) with all predictors having significant odds ratios (p < 0.01). The ROC curve showed that cut-off points > 7.40% for the COV% of the RR, > 21.66% for the CoV% of Ti/Te and > 18.78% for the CoV% of RCampe/ABampe indicated uncontrolled asthma.
Conclusion: The within-subject variability of timing parameters and TA motion can be used to predict asthma control. Higher breathing pattern variability was associated with uncontrolled asthma suggesting that irregular resting breathing can be an indicator of poor asthma control.
期刊介绍:
Asthma Research and Practice is the official publication of Interasma and publishes cutting edge basic, clinical and translational research in addition to hot topic reviews and debate articles relevant to asthma and related disorders (such as rhinitis, COPD overlapping syndrome, sinusitis). The journal has a specialized section which focusses on pediatric asthma research. Asthma Research and Practice aims to serve as an international platform for the dissemination of research of interest to pulmonologists, allergologists, primary care physicians and family doctors, ENTs and other health care providers interested in asthma, its mechanisms and comorbidities.