Wei-Shan Chang, John-Sebastian Eden, William J Hartley, Mang Shi, Karrie Rose, Edward C Holmes
{"title":"多种摇摆负鼠病病毒和一种新型肝病毒在澳大利亚帚尾负鼠中的宏基因组发现和共感染。","authors":"Wei-Shan Chang, John-Sebastian Eden, William J Hartley, Mang Shi, Karrie Rose, Edward C Holmes","doi":"10.1186/s42522-019-0006-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Australian brushtail possums (<i>Trichosurus vulpecula</i>) are an introduced pest species in New Zealand, but native to Australia where they are protected for biodiversity conservation. Wobbly possum disease (WPD) is a fatal neurological disease of Australian brushtail possums described in New Zealand populations that has been associated with infection by the arterivirus (<i>Arteriviridae</i>) wobbly possum disease virus (WPDV-NZ). Clinically, WPD-infected possums present with chronic meningoencephalitis, choroiditis and multifocal neurological symptoms including ataxia, incoordination, and abnormal gait.</p><p><strong>Methods: </strong>We conducted a retrospective investigation to characterise WPD in native Australian brushtail possums, and used a bulk meta-transcriptomic approach (i.e. total RNA-sequencing) to investigate its potential viral aetiology. PCR assays were developed for case diagnosis and full genome recovery in the face of extensive genetic variation.</p><p><strong>Results: </strong>We identified genetically distinct lineages of arteriviruses from archival tissues of WPD-infected possums in Australia, termed wobbly possum disease virus AU1 and AU2. Phylogenetically, WPDV-AU1 and WPDV-AU2 shared only ~ 70% nucleotide similarity to each other and the WPDV-NZ strain, suggestive of a relatively ancient divergence. Notably, we also identified a novel and divergent hepacivirus (<i>Flaviviridae</i>) - the first in a marsupial - in both WPD-infected and uninfected possums, indicative of virus co-infection.</p><p><strong>Conclusions: </strong>We have identified marsupial-specific lineages of arteriviruses in mainland Australia that are genetically distinct from that in New Zealand, in some cases co-infecting animals with a novel hepacivirus. Our study provides new insight into the hidden genetic diversity of arteriviruses, the capacity for virus co-infection, and highlights the utility of meta-transcriptomics for disease investigation in a One Health context.</p>","PeriodicalId":19490,"journal":{"name":"One Health Outlook","volume":"1 ","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42522-019-0006-x","citationCount":"20","resultStr":"{\"title\":\"Metagenomic discovery and co-infection of diverse wobbly possum disease viruses and a novel hepacivirus in Australian brushtail possums.\",\"authors\":\"Wei-Shan Chang, John-Sebastian Eden, William J Hartley, Mang Shi, Karrie Rose, Edward C Holmes\",\"doi\":\"10.1186/s42522-019-0006-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Australian brushtail possums (<i>Trichosurus vulpecula</i>) are an introduced pest species in New Zealand, but native to Australia where they are protected for biodiversity conservation. Wobbly possum disease (WPD) is a fatal neurological disease of Australian brushtail possums described in New Zealand populations that has been associated with infection by the arterivirus (<i>Arteriviridae</i>) wobbly possum disease virus (WPDV-NZ). Clinically, WPD-infected possums present with chronic meningoencephalitis, choroiditis and multifocal neurological symptoms including ataxia, incoordination, and abnormal gait.</p><p><strong>Methods: </strong>We conducted a retrospective investigation to characterise WPD in native Australian brushtail possums, and used a bulk meta-transcriptomic approach (i.e. total RNA-sequencing) to investigate its potential viral aetiology. PCR assays were developed for case diagnosis and full genome recovery in the face of extensive genetic variation.</p><p><strong>Results: </strong>We identified genetically distinct lineages of arteriviruses from archival tissues of WPD-infected possums in Australia, termed wobbly possum disease virus AU1 and AU2. Phylogenetically, WPDV-AU1 and WPDV-AU2 shared only ~ 70% nucleotide similarity to each other and the WPDV-NZ strain, suggestive of a relatively ancient divergence. Notably, we also identified a novel and divergent hepacivirus (<i>Flaviviridae</i>) - the first in a marsupial - in both WPD-infected and uninfected possums, indicative of virus co-infection.</p><p><strong>Conclusions: </strong>We have identified marsupial-specific lineages of arteriviruses in mainland Australia that are genetically distinct from that in New Zealand, in some cases co-infecting animals with a novel hepacivirus. Our study provides new insight into the hidden genetic diversity of arteriviruses, the capacity for virus co-infection, and highlights the utility of meta-transcriptomics for disease investigation in a One Health context.</p>\",\"PeriodicalId\":19490,\"journal\":{\"name\":\"One Health Outlook\",\"volume\":\"1 \",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42522-019-0006-x\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"One Health Outlook\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42522-019-0006-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"One Health Outlook","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42522-019-0006-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Metagenomic discovery and co-infection of diverse wobbly possum disease viruses and a novel hepacivirus in Australian brushtail possums.
Background: Australian brushtail possums (Trichosurus vulpecula) are an introduced pest species in New Zealand, but native to Australia where they are protected for biodiversity conservation. Wobbly possum disease (WPD) is a fatal neurological disease of Australian brushtail possums described in New Zealand populations that has been associated with infection by the arterivirus (Arteriviridae) wobbly possum disease virus (WPDV-NZ). Clinically, WPD-infected possums present with chronic meningoencephalitis, choroiditis and multifocal neurological symptoms including ataxia, incoordination, and abnormal gait.
Methods: We conducted a retrospective investigation to characterise WPD in native Australian brushtail possums, and used a bulk meta-transcriptomic approach (i.e. total RNA-sequencing) to investigate its potential viral aetiology. PCR assays were developed for case diagnosis and full genome recovery in the face of extensive genetic variation.
Results: We identified genetically distinct lineages of arteriviruses from archival tissues of WPD-infected possums in Australia, termed wobbly possum disease virus AU1 and AU2. Phylogenetically, WPDV-AU1 and WPDV-AU2 shared only ~ 70% nucleotide similarity to each other and the WPDV-NZ strain, suggestive of a relatively ancient divergence. Notably, we also identified a novel and divergent hepacivirus (Flaviviridae) - the first in a marsupial - in both WPD-infected and uninfected possums, indicative of virus co-infection.
Conclusions: We have identified marsupial-specific lineages of arteriviruses in mainland Australia that are genetically distinct from that in New Zealand, in some cases co-infecting animals with a novel hepacivirus. Our study provides new insight into the hidden genetic diversity of arteriviruses, the capacity for virus co-infection, and highlights the utility of meta-transcriptomics for disease investigation in a One Health context.