{"title":"基于卷积神经网络的心音识别技术。","authors":"Ximing Huai, Satoshi Kitada, Dongeun Choi, Panote Siriaraya, Noriaki Kuwahara, Takashi Ashihara","doi":"10.1080/17538157.2021.1893736","DOIUrl":null,"url":null,"abstract":"<p><p>The mortality rate of heart disease continues to rise each year: developing mechanisms to reduce mortality from heart disease is a top concern in today's society. Heart sound auscultation is a crucial skill used to detect and diagnose heart disease. In this study, we propose a heart sound signal classification algorithm based on a convolutional neural network. The algorithm is based on heart sound data collected in the clinic and from medical books. The heart sound signals were first preprocessed into a grayscale image of 5 seconds. The training samples were then used to train and optimize the convolutional neural network; obtaining a training result with an accuracy of 95.17% and a loss value of 0.23. Finally, the convolutional neural network was used to test the test set samples. The results showed an accuracy of 94.80%, sensitivity of 94.29%, specificity of 95.54%, precision of 93.44%, F1_score of 93.84%, and an AUC of 0.943. Compared with other algorithms, the accuracy and sensitivity of the algorithms were improved. This shows that the method used in this study can effectively classify heart sound signals and could prove useful in assisting heart sound auscultation.</p>","PeriodicalId":54984,"journal":{"name":"Informatics for Health & Social Care","volume":"46 3","pages":"320-332"},"PeriodicalIF":2.5000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17538157.2021.1893736","citationCount":"7","resultStr":"{\"title\":\"Heart sound recognition technology based on convolutional neural network.\",\"authors\":\"Ximing Huai, Satoshi Kitada, Dongeun Choi, Panote Siriaraya, Noriaki Kuwahara, Takashi Ashihara\",\"doi\":\"10.1080/17538157.2021.1893736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mortality rate of heart disease continues to rise each year: developing mechanisms to reduce mortality from heart disease is a top concern in today's society. Heart sound auscultation is a crucial skill used to detect and diagnose heart disease. In this study, we propose a heart sound signal classification algorithm based on a convolutional neural network. The algorithm is based on heart sound data collected in the clinic and from medical books. The heart sound signals were first preprocessed into a grayscale image of 5 seconds. The training samples were then used to train and optimize the convolutional neural network; obtaining a training result with an accuracy of 95.17% and a loss value of 0.23. Finally, the convolutional neural network was used to test the test set samples. The results showed an accuracy of 94.80%, sensitivity of 94.29%, specificity of 95.54%, precision of 93.44%, F1_score of 93.84%, and an AUC of 0.943. Compared with other algorithms, the accuracy and sensitivity of the algorithms were improved. This shows that the method used in this study can effectively classify heart sound signals and could prove useful in assisting heart sound auscultation.</p>\",\"PeriodicalId\":54984,\"journal\":{\"name\":\"Informatics for Health & Social Care\",\"volume\":\"46 3\",\"pages\":\"320-332\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17538157.2021.1893736\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics for Health & Social Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17538157.2021.1893736\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics for Health & Social Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17538157.2021.1893736","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Heart sound recognition technology based on convolutional neural network.
The mortality rate of heart disease continues to rise each year: developing mechanisms to reduce mortality from heart disease is a top concern in today's society. Heart sound auscultation is a crucial skill used to detect and diagnose heart disease. In this study, we propose a heart sound signal classification algorithm based on a convolutional neural network. The algorithm is based on heart sound data collected in the clinic and from medical books. The heart sound signals were first preprocessed into a grayscale image of 5 seconds. The training samples were then used to train and optimize the convolutional neural network; obtaining a training result with an accuracy of 95.17% and a loss value of 0.23. Finally, the convolutional neural network was used to test the test set samples. The results showed an accuracy of 94.80%, sensitivity of 94.29%, specificity of 95.54%, precision of 93.44%, F1_score of 93.84%, and an AUC of 0.943. Compared with other algorithms, the accuracy and sensitivity of the algorithms were improved. This shows that the method used in this study can effectively classify heart sound signals and could prove useful in assisting heart sound auscultation.
期刊介绍:
Informatics for Health & Social Care promotes evidence-based informatics as applied to the domain of health and social care. It showcases informatics research and practice within the many and diverse contexts of care; it takes personal information, both its direct and indirect use, as its central focus.
The scope of the Journal is broad, encompassing both the properties of care information and the life-cycle of associated information systems.
Consideration of the properties of care information will necessarily include the data itself, its representation, structure, and associated processes, as well as the context of its use, highlighting the related communication, computational, cognitive, social and ethical aspects.
Consideration of the life-cycle of care information systems includes full range from requirements, specifications, theoretical models and conceptual design through to sustainable implementations, and the valuation of impacts. Empirical evidence experiences related to implementation are particularly welcome.
Informatics in Health & Social Care seeks to consolidate and add to the core knowledge within the disciplines of Health and Social Care Informatics. The Journal therefore welcomes scientific papers, case studies and literature reviews. Examples of novel approaches are particularly welcome. Articles might, for example, show how care data is collected and transformed into useful and usable information, how informatics research is translated into practice, how specific results can be generalised, or perhaps provide case studies that facilitate learning from experience.