病毒细胞间传播:常规和非常规方式。

2区 医学 Q1 Medicine Advances in Virus Research Pub Date : 2020-01-01 Epub Date: 2020-09-29 DOI:10.1016/bs.aivir.2020.09.002
Nicolas Cifuentes-Munoz, Farah El Najjar, Rebecca Ellis Dutch
{"title":"病毒细胞间传播:常规和非常规方式。","authors":"Nicolas Cifuentes-Munoz,&nbsp;Farah El Najjar,&nbsp;Rebecca Ellis Dutch","doi":"10.1016/bs.aivir.2020.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"108 ","pages":"85-125"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522014/pdf/","citationCount":"22","resultStr":"{\"title\":\"Viral cell-to-cell spread: Conventional and non-conventional ways.\",\"authors\":\"Nicolas Cifuentes-Munoz,&nbsp;Farah El Najjar,&nbsp;Rebecca Ellis Dutch\",\"doi\":\"10.1016/bs.aivir.2020.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.</p>\",\"PeriodicalId\":50977,\"journal\":{\"name\":\"Advances in Virus Research\",\"volume\":\"108 \",\"pages\":\"85-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522014/pdf/\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Virus Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.aivir.2020.09.002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Virus Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.aivir.2020.09.002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 22

摘要

病毒生命周期的一个关键步骤是传播到一个新的靶细胞,这通常涉及从受感染细胞释放新的病毒颗粒,然后在下一个靶细胞中启动感染。虽然释放到细胞外环境的无细胞病毒颗粒是长距离传播所必需的,但这种机制有缺点。这些因素包括免疫系统成分的存在,单颗粒感染的低成功率,以及病毒颗粒在环境中的相对脆弱性。据报道,动物病毒有几种直接细胞间传播的机制,可以避免与无细胞颗粒相关的问题。许多病毒可以利用几种不同的直接细胞间传播机制,但我们对这些病原体的不同使用方式的了解有限。尽管不同病毒之间细胞间传播的机制不同,但对细胞骨架的关键途径和成分的利用是共同的。值得注意的是,病毒细胞间传播的一些机制与细菌使用的机制惊人地相似。在这里,我们总结了目前对病毒传播的常规和非常规机制的了解,用于检测病毒传播的常用方法,以及这些机制对病毒发病机制的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Viral cell-to-cell spread: Conventional and non-conventional ways.

A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊最新文献
CMV-encoded GPCRs in infection, disease, and pathogenesis. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. The New Zealand perspective of an ecosystem biology response to grapevine leafroll disease. Selection of nonstandard viral genomes during the evolution of RNA viruses: A virus survival strategy or a pesky inconvenience? Ubiquitination in viral entry and replication: Mechanisms and implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1