近交系间杂交组合和半同胞QTL分析。

Jong-Joo Kim, Honghua Zhao, Hauke Thomsen, Max F Rothschild, Jack C M Dekkers
{"title":"近交系间杂交组合和半同胞QTL分析。","authors":"Jong-Joo Kim,&nbsp;Honghua Zhao,&nbsp;Hauke Thomsen,&nbsp;Max F Rothschild,&nbsp;Jack C M Dekkers","doi":"10.1017/S0016672305007597","DOIUrl":null,"url":null,"abstract":"<p><p>Data from an F 2 cross between breeds of livestock are typically analysed by least squares line-cross or half-sib models to detect quantitative trait loci (QTL) that differ between or segregate within breeds. These models can also be combined to increase power to detect QTL, while maintaining the computational efficiency of least squares. Tests between models allow QTL to be characterized into those that are fixed (LC QTL), or segregating at similar (HS QTL) or different (CB QTL) frequencies in parental breeds. To evaluate power of the combined model, data wih various differences in QTL allele frequencies (FD) between parental breeds were simulated. Use of all models increased power to detect QTL. The line-cross model was the most powerful model to detect QTL for FD>0.6. The combined and half-sib models had similar power for FD<0.4. The proportion of detected QTL declared as LC QTL decreased with FD. The opposite was observed for HS QTL. The proportion of CB QTL decreased as FD deviated from 0.5. Accuracy of map position tended to be greatest for CB QTL. Models were applied to a cross of Berkshire and Yorkshire pig breeds and revealed 160 (40) QTL at the 5% chromosome (genome)-wise level for the 39 growth, carcass composition and quality traits, of which 72, 54, and 34 were declared as LC, HS and CB QTL. Fourteen CB QTL were detected only by the combined model. Thus, the combined model can increase power to detect QTL and mapping accuracy and enable characterization of QTL that segregate within breeds.</p>","PeriodicalId":12777,"journal":{"name":"Genetical research","volume":"85 3","pages":"235-48"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0016672305007597","citationCount":"46","resultStr":"{\"title\":\"Combined line-cross and half-sib QTL analysis of crosses between outbred lines.\",\"authors\":\"Jong-Joo Kim,&nbsp;Honghua Zhao,&nbsp;Hauke Thomsen,&nbsp;Max F Rothschild,&nbsp;Jack C M Dekkers\",\"doi\":\"10.1017/S0016672305007597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data from an F 2 cross between breeds of livestock are typically analysed by least squares line-cross or half-sib models to detect quantitative trait loci (QTL) that differ between or segregate within breeds. These models can also be combined to increase power to detect QTL, while maintaining the computational efficiency of least squares. Tests between models allow QTL to be characterized into those that are fixed (LC QTL), or segregating at similar (HS QTL) or different (CB QTL) frequencies in parental breeds. To evaluate power of the combined model, data wih various differences in QTL allele frequencies (FD) between parental breeds were simulated. Use of all models increased power to detect QTL. The line-cross model was the most powerful model to detect QTL for FD>0.6. The combined and half-sib models had similar power for FD<0.4. The proportion of detected QTL declared as LC QTL decreased with FD. The opposite was observed for HS QTL. The proportion of CB QTL decreased as FD deviated from 0.5. Accuracy of map position tended to be greatest for CB QTL. Models were applied to a cross of Berkshire and Yorkshire pig breeds and revealed 160 (40) QTL at the 5% chromosome (genome)-wise level for the 39 growth, carcass composition and quality traits, of which 72, 54, and 34 were declared as LC, HS and CB QTL. Fourteen CB QTL were detected only by the combined model. Thus, the combined model can increase power to detect QTL and mapping accuracy and enable characterization of QTL that segregate within breeds.</p>\",\"PeriodicalId\":12777,\"journal\":{\"name\":\"Genetical research\",\"volume\":\"85 3\",\"pages\":\"235-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0016672305007597\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetical research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0016672305007597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetical research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0016672305007597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

家畜品种间f2杂交的数据通常采用最小二乘杂交或半同胞模型进行分析,以检测品种间差异或分离的数量性状位点(QTL)。这些模型也可以组合在一起,以提高检测QTL的能力,同时保持最小二乘的计算效率。模型之间的测试可以将QTL分为固定的(LC QTL),或亲本品种中频率相似的(HS QTL)或频率不同的(CB QTL)。为了评估组合模型的有效性,模拟了亲本品种之间QTL等位基因频率(FD)差异的数据。使用所有模型增加了检测QTL的能力。对于FD>0.6的QTL,杂交模型检测效果最好。组合和半同胞模型对FD的功率相似
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined line-cross and half-sib QTL analysis of crosses between outbred lines.

Data from an F 2 cross between breeds of livestock are typically analysed by least squares line-cross or half-sib models to detect quantitative trait loci (QTL) that differ between or segregate within breeds. These models can also be combined to increase power to detect QTL, while maintaining the computational efficiency of least squares. Tests between models allow QTL to be characterized into those that are fixed (LC QTL), or segregating at similar (HS QTL) or different (CB QTL) frequencies in parental breeds. To evaluate power of the combined model, data wih various differences in QTL allele frequencies (FD) between parental breeds were simulated. Use of all models increased power to detect QTL. The line-cross model was the most powerful model to detect QTL for FD>0.6. The combined and half-sib models had similar power for FD<0.4. The proportion of detected QTL declared as LC QTL decreased with FD. The opposite was observed for HS QTL. The proportion of CB QTL decreased as FD deviated from 0.5. Accuracy of map position tended to be greatest for CB QTL. Models were applied to a cross of Berkshire and Yorkshire pig breeds and revealed 160 (40) QTL at the 5% chromosome (genome)-wise level for the 39 growth, carcass composition and quality traits, of which 72, 54, and 34 were declared as LC, HS and CB QTL. Fourteen CB QTL were detected only by the combined model. Thus, the combined model can increase power to detect QTL and mapping accuracy and enable characterization of QTL that segregate within breeds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wild populations are smaller than we think: a commentary on 'Effective population size/adult population size ratios in wildlife: a review' by Richard Frankham. Impact of selection on effective population size: a commentary on 'Inbreeding in artificial selection programmes' by Alan Robertson. Hybrid dysgenesis: from darkness into light: a commentary on 'Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility' by William R. Engels. A model in two acts: a commentary on 'A model detectable alleles in a finite population' by Timoko Ohta and Motoo Kimura. Estimating the recombination parameter: a commentary on 'Estimating the recombination parameter of a finite population model without selection' by Richard R. Hudson.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1