脑室注射柠檬酸亚铁铵单次氧化应激对大鼠海马锥体神经元损伤及恢复的影响。

Wei-Yi Ong, Su-Fung Ling, Jin-Fei Yeo, Chuang-Chin Chiueh, Akhlaq A Farooqui
{"title":"脑室注射柠檬酸亚铁铵单次氧化应激对大鼠海马锥体神经元损伤及恢复的影响。","authors":"Wei-Yi Ong,&nbsp;Su-Fung Ling,&nbsp;Jin-Fei Yeo,&nbsp;Chuang-Chin Chiueh,&nbsp;Akhlaq A Farooqui","doi":"10.1051/rnd:2005051","DOIUrl":null,"url":null,"abstract":"<p><p>The present study was carried out to elucidate the effect of a single episode of oxidative stress on pyramidal neurons of the rat hippocampus. A significant increase in the number of neurons that were immunolabeled for the toxic lipid peroxidation product, 4-hydroxynonenal (HNE) was observed in field CA3 of the hippocampus, at 1 day, 7 days and 14 days after intracerebroventricular injection of 1 microL of 5 mM ferrous ammonium citrate, compared to ammonium citrate injected controls at these time points. The number of HNE positive cells was fewer at 14 days, compared to 1 day, after ferrous ammonium citrate injection. The changes in HNE immunoreactivity were paralleled by changes in cytoplasmic phospholipase A2 (cPLA2) labeling in the pyramidal neurons in adjacent sections, suggesting that some of the HNE could have arisen as a result of peroxidation of arachidonic acid that was released by cPLA2. Interestingly, despite the HNE and cPLA2 labeling, no loss of neurons was observed in adjacent Nissl and Fluoro-Jade stained sections. Electron microscopy also showed that the HNE or cPLA2 labeled cells had features of injured neurons, rather than necrotic neurons. The reduction of HNE immunoreactivity in neurons at 14 days after oxidative injury, and the absence of cell loss at any of the time intervals, shows that hippocampal pyramidal neurons have remarkable ability to recover from a single episode of oxidative stress, if repeated injury such as seizures / excitotoxicity could be avoided.</p>","PeriodicalId":21133,"journal":{"name":"Reproduction, nutrition, development","volume":"45 5","pages":"647-62"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/rnd:2005051","citationCount":"0","resultStr":"{\"title\":\"Injury and recovery of pyramidal neurons in the rat hippocampus after a single episode of oxidative stress induced by intracerebroventricular injection of ferrous ammonium citrate.\",\"authors\":\"Wei-Yi Ong,&nbsp;Su-Fung Ling,&nbsp;Jin-Fei Yeo,&nbsp;Chuang-Chin Chiueh,&nbsp;Akhlaq A Farooqui\",\"doi\":\"10.1051/rnd:2005051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study was carried out to elucidate the effect of a single episode of oxidative stress on pyramidal neurons of the rat hippocampus. A significant increase in the number of neurons that were immunolabeled for the toxic lipid peroxidation product, 4-hydroxynonenal (HNE) was observed in field CA3 of the hippocampus, at 1 day, 7 days and 14 days after intracerebroventricular injection of 1 microL of 5 mM ferrous ammonium citrate, compared to ammonium citrate injected controls at these time points. The number of HNE positive cells was fewer at 14 days, compared to 1 day, after ferrous ammonium citrate injection. The changes in HNE immunoreactivity were paralleled by changes in cytoplasmic phospholipase A2 (cPLA2) labeling in the pyramidal neurons in adjacent sections, suggesting that some of the HNE could have arisen as a result of peroxidation of arachidonic acid that was released by cPLA2. Interestingly, despite the HNE and cPLA2 labeling, no loss of neurons was observed in adjacent Nissl and Fluoro-Jade stained sections. Electron microscopy also showed that the HNE or cPLA2 labeled cells had features of injured neurons, rather than necrotic neurons. The reduction of HNE immunoreactivity in neurons at 14 days after oxidative injury, and the absence of cell loss at any of the time intervals, shows that hippocampal pyramidal neurons have remarkable ability to recover from a single episode of oxidative stress, if repeated injury such as seizures / excitotoxicity could be avoided.</p>\",\"PeriodicalId\":21133,\"journal\":{\"name\":\"Reproduction, nutrition, development\",\"volume\":\"45 5\",\"pages\":\"647-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/rnd:2005051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction, nutrition, development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/rnd:2005051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction, nutrition, development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/rnd:2005051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在阐明单次氧化应激对大鼠海马锥体神经元的影响。在脑室内注射1微升5毫米柠檬酸亚铁铵后第1天、第7天和第14天,与注射柠檬酸铵的对照组相比,在这些时间点,海马CA3区被毒性脂质过氧化产物4-羟基壬烯醛(HNE)免疫标记的神经元数量显著增加。枸橼酸亚铁铵注射后第14天HNE阳性细胞数较第1天减少。HNE免疫反应性的变化与相邻锥体神经元胞质磷脂酶A2 (cPLA2)标记的变化相一致,提示部分HNE可能是由cPLA2释放的花生四烯酸过氧化引起的。有趣的是,尽管有HNE和cPLA2标记,相邻的Nissl和Fluoro-Jade染色切片未观察到神经元的丢失。电镜观察还发现,HNE或cPLA2标记的细胞具有损伤神经元的特征,而不是坏死神经元。氧化损伤后14天,神经元HNE免疫反应性降低,且在任何时间间隔内均未出现细胞损失,表明海马锥体神经元具有显著的从单次氧化应激中恢复的能力,如果可以避免重复损伤,如癫痫发作/兴奋性毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Injury and recovery of pyramidal neurons in the rat hippocampus after a single episode of oxidative stress induced by intracerebroventricular injection of ferrous ammonium citrate.

The present study was carried out to elucidate the effect of a single episode of oxidative stress on pyramidal neurons of the rat hippocampus. A significant increase in the number of neurons that were immunolabeled for the toxic lipid peroxidation product, 4-hydroxynonenal (HNE) was observed in field CA3 of the hippocampus, at 1 day, 7 days and 14 days after intracerebroventricular injection of 1 microL of 5 mM ferrous ammonium citrate, compared to ammonium citrate injected controls at these time points. The number of HNE positive cells was fewer at 14 days, compared to 1 day, after ferrous ammonium citrate injection. The changes in HNE immunoreactivity were paralleled by changes in cytoplasmic phospholipase A2 (cPLA2) labeling in the pyramidal neurons in adjacent sections, suggesting that some of the HNE could have arisen as a result of peroxidation of arachidonic acid that was released by cPLA2. Interestingly, despite the HNE and cPLA2 labeling, no loss of neurons was observed in adjacent Nissl and Fluoro-Jade stained sections. Electron microscopy also showed that the HNE or cPLA2 labeled cells had features of injured neurons, rather than necrotic neurons. The reduction of HNE immunoreactivity in neurons at 14 days after oxidative injury, and the absence of cell loss at any of the time intervals, shows that hippocampal pyramidal neurons have remarkable ability to recover from a single episode of oxidative stress, if repeated injury such as seizures / excitotoxicity could be avoided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gene expression pattern and hormonal regulation of small proline-rich protein 2 family members in the female mouse reproductive system during the estrous cycle and pregnancy. Positive correlation between the body weight of anestrous goats and their response to the male effect with sexually active bucks. Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus x Bos taurus) bulls. Performance and behaviour of rabbit does in a group-housing system with natural mating or artificial insemination. Body size versus gonad maturation form in under-yearling precocious males of the sea trout (Salmo trutta m. trutta L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1