TNF阻断:炎性问题。

B B Aggarwal, S Shishodia, Y Takada, D Jackson-Bernitsas, K S Ahn, G Sethi, H Ichikawa
{"title":"TNF阻断:炎性问题。","authors":"B B Aggarwal,&nbsp;S Shishodia,&nbsp;Y Takada,&nbsp;D Jackson-Bernitsas,&nbsp;K S Ahn,&nbsp;G Sethi,&nbsp;H Ichikawa","doi":"10.1007/3-540-37673-9_10","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor necrosis factor (TNF), initially discovered as a result of its antitumor activity, has now been shown to mediate tumor initiation, promotion, and metastasis. In addition, dysregulation of TNF has been implicated in a wide variety of inflammatory diseases including rheumatoid arthritis, Crohn's disease, multiple sclerosis, psoriasis, scleroderma, atopic dermatitis, systemic lupus erythematosus, type II diabetes, atherosclerosis, myocardial infarction, osteoporosis, and autoimmune deficiency disease. TNF, however, is a critical component of effective immune surveillance and is required for proper proliferation and function of NK cells, T cells, B cells, macrophages, and dendritic cells. TNF activity can be blocked, either by using antibodies (Remicade and Humira) or soluble TNF receptor (Enbrel), for the symptoms of arthritis and Crohn's disease to be alleviated, but at the same time, such treatment increases the risk of infections, certain type of cancers, and cardiotoxicity. Thus blockers of TNF that are safe and yet efficacious are urgently needed. Some evidence suggests that while the transmembrane form of TNF has beneficial effects, soluble TNF mediates toxicity. In most cells, TNF mediates its effects through activation of caspases, NF-kappaB, AP-1, c-jun N-terminal kinase, p38 MAPK, and p44/p42 MAPK. Agents that can differentially regulate TNF expression or TNF signaling can be pharmacologically safe and effective therapeutics. Our laboratory has identified numerous such agents from natural sources. These are discussed further in detail.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 56","pages":"161-86"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-540-37673-9_10","citationCount":"122","resultStr":"{\"title\":\"TNF blockade: an inflammatory issue.\",\"authors\":\"B B Aggarwal,&nbsp;S Shishodia,&nbsp;Y Takada,&nbsp;D Jackson-Bernitsas,&nbsp;K S Ahn,&nbsp;G Sethi,&nbsp;H Ichikawa\",\"doi\":\"10.1007/3-540-37673-9_10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor necrosis factor (TNF), initially discovered as a result of its antitumor activity, has now been shown to mediate tumor initiation, promotion, and metastasis. In addition, dysregulation of TNF has been implicated in a wide variety of inflammatory diseases including rheumatoid arthritis, Crohn's disease, multiple sclerosis, psoriasis, scleroderma, atopic dermatitis, systemic lupus erythematosus, type II diabetes, atherosclerosis, myocardial infarction, osteoporosis, and autoimmune deficiency disease. TNF, however, is a critical component of effective immune surveillance and is required for proper proliferation and function of NK cells, T cells, B cells, macrophages, and dendritic cells. TNF activity can be blocked, either by using antibodies (Remicade and Humira) or soluble TNF receptor (Enbrel), for the symptoms of arthritis and Crohn's disease to be alleviated, but at the same time, such treatment increases the risk of infections, certain type of cancers, and cardiotoxicity. Thus blockers of TNF that are safe and yet efficacious are urgently needed. Some evidence suggests that while the transmembrane form of TNF has beneficial effects, soluble TNF mediates toxicity. In most cells, TNF mediates its effects through activation of caspases, NF-kappaB, AP-1, c-jun N-terminal kinase, p38 MAPK, and p44/p42 MAPK. Agents that can differentially regulate TNF expression or TNF signaling can be pharmacologically safe and effective therapeutics. Our laboratory has identified numerous such agents from natural sources. These are discussed further in detail.</p>\",\"PeriodicalId\":80277,\"journal\":{\"name\":\"Ernst Schering Research Foundation workshop\",\"volume\":\" 56\",\"pages\":\"161-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/3-540-37673-9_10\",\"citationCount\":\"122\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ernst Schering Research Foundation workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/3-540-37673-9_10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Research Foundation workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/3-540-37673-9_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 122

摘要

肿瘤坏死因子(TNF)最初是由于其抗肿瘤活性而被发现的,现在已被证明介导肿瘤的发生、促进和转移。此外,TNF的失调与多种炎症性疾病有关,包括类风湿性关节炎、克罗恩病、多发性硬化症、牛皮癣、硬皮病、特应性皮炎、系统性红斑狼疮、II型糖尿病、动脉粥样硬化、心肌梗死、骨质疏松症和自身免疫性缺陷疾病。然而,TNF是有效免疫监视的关键组成部分,是NK细胞、T细胞、B细胞、巨噬细胞和树突状细胞正常增殖和功能所必需的。可以通过使用抗体(Remicade和Humira)或可溶性TNF受体(Enbrel)来阻断TNF活性,以减轻关节炎和克罗恩病的症状,但同时,这种治疗增加了感染、某些类型癌症和心脏毒性的风险。因此,迫切需要安全有效的TNF阻滞剂。一些证据表明,虽然TNF的跨膜形式具有有益作用,但可溶性TNF介导毒性。在大多数细胞中,TNF通过激活caspases、NF-kappaB、AP-1、c-jun n末端激酶、p38 MAPK和p44/p42 MAPK来介导其作用。可以调节TNF表达或TNF信号的药物在药理学上是安全有效的治疗方法。我们的实验室已经从自然来源中鉴定出许多这样的药剂。我们将进一步详细讨论这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TNF blockade: an inflammatory issue.

Tumor necrosis factor (TNF), initially discovered as a result of its antitumor activity, has now been shown to mediate tumor initiation, promotion, and metastasis. In addition, dysregulation of TNF has been implicated in a wide variety of inflammatory diseases including rheumatoid arthritis, Crohn's disease, multiple sclerosis, psoriasis, scleroderma, atopic dermatitis, systemic lupus erythematosus, type II diabetes, atherosclerosis, myocardial infarction, osteoporosis, and autoimmune deficiency disease. TNF, however, is a critical component of effective immune surveillance and is required for proper proliferation and function of NK cells, T cells, B cells, macrophages, and dendritic cells. TNF activity can be blocked, either by using antibodies (Remicade and Humira) or soluble TNF receptor (Enbrel), for the symptoms of arthritis and Crohn's disease to be alleviated, but at the same time, such treatment increases the risk of infections, certain type of cancers, and cardiotoxicity. Thus blockers of TNF that are safe and yet efficacious are urgently needed. Some evidence suggests that while the transmembrane form of TNF has beneficial effects, soluble TNF mediates toxicity. In most cells, TNF mediates its effects through activation of caspases, NF-kappaB, AP-1, c-jun N-terminal kinase, p38 MAPK, and p44/p42 MAPK. Agents that can differentially regulate TNF expression or TNF signaling can be pharmacologically safe and effective therapeutics. Our laboratory has identified numerous such agents from natural sources. These are discussed further in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiences with dose finding in patients in early drug development: the use of biomarkers in early decision making. Genotype and phenotype relationship in drug metabolism. Clinical trials in elderly patients. Dose finding in pediatric patients. Integration of pediatric aspects into the general drug development process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1