NTP对孔雀鱼(Poecilia reticulata)和medaka (Oryzias latipes)中2,2-二(溴甲基)-1,3-丙二醇、硝基甲烷和1,2,3-三氯丙烷(cas . 3296-90- 0,75 -52-5和96-18-4)的致癌性研究(水生研究)。

Q4 Medicine National Toxicology Program technical report series Pub Date : 2005-10-01
{"title":"NTP对孔雀鱼(Poecilia reticulata)和medaka (Oryzias latipes)中2,2-二(溴甲基)-1,3-丙二醇、硝基甲烷和1,2,3-三氯丙烷(cas . 3296-90- 0,75 -52-5和96-18-4)的致癌性研究(水生研究)。","authors":"","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The NTP chose to initiate studies in fish as an exploration of alternate or additional models for examining chemical toxicity and carcinogenicity. The use of small fish species in carcinogenicity testing offered potential advantages as a bioassay test system, including significant savings in cost and time over rodent studies. Large numbers of small fish could be easily maintained in a limited area. The two species chosen for study were guppy (Poecilia reticulata) and medaka (Oryzias latipes), both of which are hardy, easily maintained, and have a low occurrence of background lesions. The three chemicals chosen for study in fish had already been studied by the NTP in rodents, permitting a comparison of results between the two models. Two of the chemicals used (2,2-bis(bromomethyl)-1,3-propanediol and 1,2,3-trichloropropane) were mutagenic and multisite carcinogens in rats and mice. The third chemical, nitromethane, was nonmutagenic with a more modest carcinogenic response in rodents. Male and female guppies and medaka were exposed to 2,2-bis(bromomethyl)- 1,3-propanediol (greater than 99% pure), nitromethane, (greater than 99% pure), or 1,2,3-trichloropropane (99% pure) in aquaria water for up to 16 months. OVERALL STUDY DESIGN: Groups of approximately 220 guppies (two replicates of 110) were maintained in aquaria water containing nominal concentrations of 0, 24, 60, or 150 mg/L 2,2-bis(bromomethyl)-1,3-propanediol; 0, 10, 30, or 70 mg/L nitromethane; or 0, 4.5, 9.0, or 18.0 mg/L 1,2,3-trichloropropane. Groups of approximately 340 medaka (two replicates of 170) were maintained in aquaria water containing 0, 24, 60, or 150 mg/L 2,2-bis(bromomethyl)-1,3-propanediol; 0, 10, 20, or 40 mg/L nitromethane; or 0, 4.5, 9.0, or 18.0 mg/L 1,2,3-trichloropropane. The overall study durations were 16 months for all guppy studies, 14 months for 2,2-bis(bromomethyl)-1,3-propanediol-exposed medaka, and 13 months for nitromethane- and 1,2,3-trichloropropane-exposed medaka. Ten guppies and 10 medaka from each group replicate were sacrificed at 9 months for histopathologic analysis. Approximately one third of the remaining fish from each group were placed in chemical-free water at 9 months and constituted a stop-exposure study component. The remainder of the fish were exposed for the duration of the study and constituted the core study component. A stop-exposure component was added to determine if stopping the exposure at 9 months and transferring to chemical-free aquaria might allow for better survival and tumor development. The sex of guppies and medaka was determined at histopathologic analysis. 2,2-BIS(BROMOMETHYL)-1,3-PROPANEDIOL - 16-MONTH STUDY IN GUPPIES: 2,2-Bis(bromomethyl)-1,3-propanediol was chronically toxic to guppies in the 60 and 150 mg/L core and stop-exposure groups. Due to mortality, exposure of core study animals in the 150 mg/L group was terminated on day 443, after approximately 64 weeks on study, and fish were maintained in 2,2-bis(bromomethyl)- 1,3-propanediol-free water in the exposure system until the end of the study at 69 weeks. Nominal exposure concentrations of 24, 60, and 150 mg/L provided actual aquaria water exposure concentrations of 20.0, 53.5, and 139.0 mg/L 2,2-bis(bromomethyl)- 1,3-propanediol, respectively. There were no treatment-related differences between the control and exposed groups in body weights or lengths. At 9 months, hepatocellular adenomas occurred in one 24 mg/L male and in one 150 mg/L male. In the core study, the incidence of hepatocellular adenoma or carcinoma (combined) in 150 mg/L males was greater than that in the controls; multiple adenomas occurred in two 150 mg/L males and in one 150 mg/L female. Cholangioma occurred in a small number of exposed males and females. In the stop-exposure study, incidences of hepatocellular adenoma (including multiple) and of hepatocellular carcinoma were greater in 150 mg/L males than in controls. One cholangioma and one cholangiocarcinoma occurred in the 150 mg/L female group. 14-MONTH STUDY IN MEDAKA: Exposure to 2,2-bis(bromomethyl)-1,3-propanediol did not result in any significant reduction in survival, although the mortality of fish was somewhat greater in the 60 and 150 mg/L core study groups than in the control and 24 mg/L groups. After reallocation, mortality of medaka in the 60 and 150 mg/L core groups was slightly increased over the corresponding stop-exposure groups. Nominal exposure concentrations of 24, 60, and 150 mg/L provided actual exposure concentrations of 19.4, 56.9, and 137.8 mg/L 2,2-bis(bromomethyl)- 1,3-propanediol, respectively. Core study animals in the 60 and 150 mg/L groups were significantly larger, in both body length and weight, than control group fish. In the core study, the incidence of hepatocellular adenoma or carcinoma (combined) was increased in 150 mg/L males. Cholangiocarcinomas occurred in a few exposed males and females, with all but one occurring in 150 mg/L fish. One cholangioma occurred in a 150 mg/L female, and one occurred in a control female. In the stop-exposure study, incidences of hepatocellular adenoma or carcinoma (combined) were marginally increased in the 150 mg/L group of males and in the 60 and 150 mg/L groups of females as compared with controls. Cholangiocarcinoma occurred in one male and one female in the 150 mg/L groups and in one control female. NITROMETHANE - 16-MONTH STUDY IN GUPPIES: Although the cause of death could not be confirmed in many cases, mortality in the 70 mg/L groups appeared to indicate that this level of nitromethane exposure was chronically toxic. This is confirmed by the similar survival rate of guppies from all treatments following removal from treatment aquaria and placement in stop-exposure. Due to the high mortality of fish in the 70 mg/L core study groups, these fish were removed from treatment (day 396) and fixed for histological analyses after approximately 57 weeks on study. The controls and other exposed groups were sacrificed at 70 weeks. Nominal exposure concentrations of 10, 30, and 70 mg/L provided actual exposure concentrations of 9.9, 28.7, and 66.4 mg/L nitromethane, respectively. There were no treatment-related differences between the control and exposed groups in body lengths or weights. 13-MONTH STUDY IN MEDAKA: Nitromethane in the aquaria supported a substantial microfaunal growth which, without frequent cleaning, affected water quality and treatment concentrations. To maintain acceptable water quality and treatment concentrations potentially affected by the rapid microfaunal growth, the study aquaria were brushed once and siphoned three times each day. Due to this frequent activity, a number of fish probably died due to mechanical injury. Unfortunately, the cause of death could not be confirmed in many cases; the mortality from this activity is believed to have been approximately uniform among treatments and should not have affected the comparison of survival between treatments. Based on mortality in this study and the previous life-span evaluation, the life phase of this study was terminated approximately 13.5 months after hatching. Nominal exposure concentrations of 10, 20, and 40 mg/L resulted in actual exposure concentrations of 9.3, 20.8, and 41.7 mg/L nitromethane, respectively. No differences between control and exposed groups were found in body lengths or weights at the 9-month interim evaluation. Due to mortality, unequal numbers of fish were distributed among the core study and stop-exposure aquaria at 9 months. Differences in lengths and weights were found at 13 months. The biological significance of this finding is unknown. At 9 months, a single cholangiocarcinoma occurred in a 40 mg/L male. Hepatocellular adenomas occurred in two 20 mg/L males and in one 40 mg/L female. In the core study, one cholangioma occurred in a 20 mg/L male, and cholangiocarcinomas were seen in a few exposed males, but none occurred in control males. 1,2,3-TRICHLOROPROPANE - 16-MONTH STUDY IN GUPPIES: The survival of exposed guppies was less than that of the control group at 9 months. Reduced survival was evident at 6 months in the 18.0 mg/L groups and at 7 months in the 4.5 and 9.0 mg/L groups. Survival was significantly reduced in the 18.0 mg/L core study group within 1 month of the 9-month interim evaluation, and mortality in this group was 42.6% between 9 months and study termination. Nominal exposure concentrations of 4.5, 9.0, and 18.0 mg/L resulted in actual exposure concentrations of 4.4, 8.8, and 18.2 mg/L 1,2,3-trichloropropane, respectively. Guppies in the 18.0 mg/L core study group were significantly longer and weighed more than the controls. Fish in the 18.0 mg/L stop-exposure group also weighed more than the controls. Mortality of fish during the study resulted in unequal numbers of individuals distributed to core study and stop-exposure aquaria at 9 months. This appears to have influenced the length and weight of fish measured at study termination (i.e., the smaller tank population allowed the fish to grow more). Observed differences in weight and length between controls and 18.0 mg/L fish was most likely an artifact of the reduced numbers of fish in the 18.0 mg/L aquaria. At 9 months, multiple hepatocellular adenomas occurred in one 4.5 mg/L male, and one hepatocellular adenoma occurred in a control male. In the core study, increased incidences of cholangiocellular (bile duct) and hepatocellular neoplasms occurred in exposed groups of males and females. Cholangioma and cholangiocarcinoma were seen in several exposed males and females. In the stop-exposure study, increased incidences of hepatocellular neoplasms occurred in 18.0 mg/L males and increased incidences of cholangiocellular (bile duct) neoplasms occurred in 18.0 mg/L females. (ABSTRACT TRUNCATED)</p>","PeriodicalId":19036,"journal":{"name":"National Toxicology Program technical report series","volume":" 528","pages":"1-190"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NTP carcinogenesis studies of 2,2-bis(bromomethyl)-1,3-propanediol, nitromethane, and 1,2,3-trichloropropane (cas nos. 3296-90-0, 75-52-5, and 96-18-4) in guppies (Poecilia reticulata) and medaka (Oryzias latipes) (Waterborne Studies).\",\"authors\":\"\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The NTP chose to initiate studies in fish as an exploration of alternate or additional models for examining chemical toxicity and carcinogenicity. The use of small fish species in carcinogenicity testing offered potential advantages as a bioassay test system, including significant savings in cost and time over rodent studies. Large numbers of small fish could be easily maintained in a limited area. The two species chosen for study were guppy (Poecilia reticulata) and medaka (Oryzias latipes), both of which are hardy, easily maintained, and have a low occurrence of background lesions. The three chemicals chosen for study in fish had already been studied by the NTP in rodents, permitting a comparison of results between the two models. Two of the chemicals used (2,2-bis(bromomethyl)-1,3-propanediol and 1,2,3-trichloropropane) were mutagenic and multisite carcinogens in rats and mice. The third chemical, nitromethane, was nonmutagenic with a more modest carcinogenic response in rodents. Male and female guppies and medaka were exposed to 2,2-bis(bromomethyl)- 1,3-propanediol (greater than 99% pure), nitromethane, (greater than 99% pure), or 1,2,3-trichloropropane (99% pure) in aquaria water for up to 16 months. OVERALL STUDY DESIGN: Groups of approximately 220 guppies (two replicates of 110) were maintained in aquaria water containing nominal concentrations of 0, 24, 60, or 150 mg/L 2,2-bis(bromomethyl)-1,3-propanediol; 0, 10, 30, or 70 mg/L nitromethane; or 0, 4.5, 9.0, or 18.0 mg/L 1,2,3-trichloropropane. Groups of approximately 340 medaka (two replicates of 170) were maintained in aquaria water containing 0, 24, 60, or 150 mg/L 2,2-bis(bromomethyl)-1,3-propanediol; 0, 10, 20, or 40 mg/L nitromethane; or 0, 4.5, 9.0, or 18.0 mg/L 1,2,3-trichloropropane. The overall study durations were 16 months for all guppy studies, 14 months for 2,2-bis(bromomethyl)-1,3-propanediol-exposed medaka, and 13 months for nitromethane- and 1,2,3-trichloropropane-exposed medaka. Ten guppies and 10 medaka from each group replicate were sacrificed at 9 months for histopathologic analysis. Approximately one third of the remaining fish from each group were placed in chemical-free water at 9 months and constituted a stop-exposure study component. The remainder of the fish were exposed for the duration of the study and constituted the core study component. A stop-exposure component was added to determine if stopping the exposure at 9 months and transferring to chemical-free aquaria might allow for better survival and tumor development. The sex of guppies and medaka was determined at histopathologic analysis. 2,2-BIS(BROMOMETHYL)-1,3-PROPANEDIOL - 16-MONTH STUDY IN GUPPIES: 2,2-Bis(bromomethyl)-1,3-propanediol was chronically toxic to guppies in the 60 and 150 mg/L core and stop-exposure groups. Due to mortality, exposure of core study animals in the 150 mg/L group was terminated on day 443, after approximately 64 weeks on study, and fish were maintained in 2,2-bis(bromomethyl)- 1,3-propanediol-free water in the exposure system until the end of the study at 69 weeks. Nominal exposure concentrations of 24, 60, and 150 mg/L provided actual aquaria water exposure concentrations of 20.0, 53.5, and 139.0 mg/L 2,2-bis(bromomethyl)- 1,3-propanediol, respectively. There were no treatment-related differences between the control and exposed groups in body weights or lengths. At 9 months, hepatocellular adenomas occurred in one 24 mg/L male and in one 150 mg/L male. In the core study, the incidence of hepatocellular adenoma or carcinoma (combined) in 150 mg/L males was greater than that in the controls; multiple adenomas occurred in two 150 mg/L males and in one 150 mg/L female. Cholangioma occurred in a small number of exposed males and females. In the stop-exposure study, incidences of hepatocellular adenoma (including multiple) and of hepatocellular carcinoma were greater in 150 mg/L males than in controls. One cholangioma and one cholangiocarcinoma occurred in the 150 mg/L female group. 14-MONTH STUDY IN MEDAKA: Exposure to 2,2-bis(bromomethyl)-1,3-propanediol did not result in any significant reduction in survival, although the mortality of fish was somewhat greater in the 60 and 150 mg/L core study groups than in the control and 24 mg/L groups. After reallocation, mortality of medaka in the 60 and 150 mg/L core groups was slightly increased over the corresponding stop-exposure groups. Nominal exposure concentrations of 24, 60, and 150 mg/L provided actual exposure concentrations of 19.4, 56.9, and 137.8 mg/L 2,2-bis(bromomethyl)- 1,3-propanediol, respectively. Core study animals in the 60 and 150 mg/L groups were significantly larger, in both body length and weight, than control group fish. In the core study, the incidence of hepatocellular adenoma or carcinoma (combined) was increased in 150 mg/L males. Cholangiocarcinomas occurred in a few exposed males and females, with all but one occurring in 150 mg/L fish. One cholangioma occurred in a 150 mg/L female, and one occurred in a control female. In the stop-exposure study, incidences of hepatocellular adenoma or carcinoma (combined) were marginally increased in the 150 mg/L group of males and in the 60 and 150 mg/L groups of females as compared with controls. Cholangiocarcinoma occurred in one male and one female in the 150 mg/L groups and in one control female. NITROMETHANE - 16-MONTH STUDY IN GUPPIES: Although the cause of death could not be confirmed in many cases, mortality in the 70 mg/L groups appeared to indicate that this level of nitromethane exposure was chronically toxic. This is confirmed by the similar survival rate of guppies from all treatments following removal from treatment aquaria and placement in stop-exposure. Due to the high mortality of fish in the 70 mg/L core study groups, these fish were removed from treatment (day 396) and fixed for histological analyses after approximately 57 weeks on study. The controls and other exposed groups were sacrificed at 70 weeks. Nominal exposure concentrations of 10, 30, and 70 mg/L provided actual exposure concentrations of 9.9, 28.7, and 66.4 mg/L nitromethane, respectively. There were no treatment-related differences between the control and exposed groups in body lengths or weights. 13-MONTH STUDY IN MEDAKA: Nitromethane in the aquaria supported a substantial microfaunal growth which, without frequent cleaning, affected water quality and treatment concentrations. To maintain acceptable water quality and treatment concentrations potentially affected by the rapid microfaunal growth, the study aquaria were brushed once and siphoned three times each day. Due to this frequent activity, a number of fish probably died due to mechanical injury. Unfortunately, the cause of death could not be confirmed in many cases; the mortality from this activity is believed to have been approximately uniform among treatments and should not have affected the comparison of survival between treatments. Based on mortality in this study and the previous life-span evaluation, the life phase of this study was terminated approximately 13.5 months after hatching. Nominal exposure concentrations of 10, 20, and 40 mg/L resulted in actual exposure concentrations of 9.3, 20.8, and 41.7 mg/L nitromethane, respectively. No differences between control and exposed groups were found in body lengths or weights at the 9-month interim evaluation. Due to mortality, unequal numbers of fish were distributed among the core study and stop-exposure aquaria at 9 months. Differences in lengths and weights were found at 13 months. The biological significance of this finding is unknown. At 9 months, a single cholangiocarcinoma occurred in a 40 mg/L male. Hepatocellular adenomas occurred in two 20 mg/L males and in one 40 mg/L female. In the core study, one cholangioma occurred in a 20 mg/L male, and cholangiocarcinomas were seen in a few exposed males, but none occurred in control males. 1,2,3-TRICHLOROPROPANE - 16-MONTH STUDY IN GUPPIES: The survival of exposed guppies was less than that of the control group at 9 months. Reduced survival was evident at 6 months in the 18.0 mg/L groups and at 7 months in the 4.5 and 9.0 mg/L groups. Survival was significantly reduced in the 18.0 mg/L core study group within 1 month of the 9-month interim evaluation, and mortality in this group was 42.6% between 9 months and study termination. Nominal exposure concentrations of 4.5, 9.0, and 18.0 mg/L resulted in actual exposure concentrations of 4.4, 8.8, and 18.2 mg/L 1,2,3-trichloropropane, respectively. Guppies in the 18.0 mg/L core study group were significantly longer and weighed more than the controls. Fish in the 18.0 mg/L stop-exposure group also weighed more than the controls. Mortality of fish during the study resulted in unequal numbers of individuals distributed to core study and stop-exposure aquaria at 9 months. This appears to have influenced the length and weight of fish measured at study termination (i.e., the smaller tank population allowed the fish to grow more). Observed differences in weight and length between controls and 18.0 mg/L fish was most likely an artifact of the reduced numbers of fish in the 18.0 mg/L aquaria. At 9 months, multiple hepatocellular adenomas occurred in one 4.5 mg/L male, and one hepatocellular adenoma occurred in a control male. In the core study, increased incidences of cholangiocellular (bile duct) and hepatocellular neoplasms occurred in exposed groups of males and females. Cholangioma and cholangiocarcinoma were seen in several exposed males and females. In the stop-exposure study, increased incidences of hepatocellular neoplasms occurred in 18.0 mg/L males and increased incidences of cholangiocellular (bile duct) neoplasms occurred in 18.0 mg/L females. (ABSTRACT TRUNCATED)</p>\",\"PeriodicalId\":19036,\"journal\":{\"name\":\"National Toxicology Program technical report series\",\"volume\":\" 528\",\"pages\":\"1-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Toxicology Program technical report series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Toxicology Program technical report series","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

国家毒理学规划选择在鱼类中开展研究,以探索检验化学毒性和致癌性的替代或额外模型。在致癌性测试中使用小型鱼类作为一种生物测定测试系统具有潜在的优势,包括与啮齿动物研究相比,在成本和时间上显著节省。在有限的区域内很容易饲养大量的小鱼。选择的两个物种是孔雀鱼(Poecilia reticulata)和medaka (Oryzias latipes),这两个物种都是耐寒的,容易维持的,并且发生背景病变的可能性很小。国家毒理学计划已经在啮齿类动物身上研究了选择用于鱼类研究的三种化学物质,从而可以比较两种模型之间的结果。使用的两种化学物质(2,2-二(溴乙基)-1,3-丙二醇和1,2,3-三氯丙烷)对大鼠和小鼠具有诱变性和多位点致癌物。第三种化学物质硝基甲烷不会引起突变,在啮齿类动物身上的致癌反应更为温和。雄性和雌性孔雀鱼和medaka在水族箱水中暴露于2,2-二(溴甲基)- 1,3-丙二醇(纯度高于99%)、硝基甲烷(纯度高于99%)或1,2,3-三氯丙烷(纯度高于99%)长达16个月。总体研究设计:每组约220只孔雀鱼(两个重复,每组110只)被置于标称浓度为0、24、60或150 mg/L的水族箱水中;0,10,30或70mg /L硝基甲烷;或0,4.5,9.0,或18.0 mg/L 1,2,3-三氯丙烷。在含有0、24、60或150 mg/L的2,2-二(溴乙基)-1,3-丙二醇的水族箱水中,每组约340只水母(两个重复,每组170只);0,10,20或40mg /L硝基甲烷;或0,4.5,9.0,或18.0 mg/L 1,2,3-三氯丙烷。所有孔雀鱼研究的总研究时间为16个月,暴露于2,2-二(溴甲基)-1,3-丙二醇的鳉鱼研究时间为14个月,暴露于硝基甲烷和1,2,3-三氯丙烷的鳉鱼研究时间为13个月。9月龄时,每组重复各处死10只孔雀鱼和10只medaka进行组织病理分析。9个月时,每组中大约三分之一的剩余鱼被放置在不含化学物质的水中,作为停止接触研究的组成部分。其余的鱼在研究期间暴露,构成了研究的核心组成部分。添加停止暴露成分以确定是否在9个月时停止暴露并转移到无化学物质的水族箱可能会使生存和肿瘤发展更好。通过组织病理学分析确定了孔雀鱼和medaka的性别。2,2-双(溴乙基)-1,3-丙二醇-对孔雀鱼的16个月研究:2,2-双(溴乙基)-1,3-丙二醇对60和150 mg/L核心和停止暴露组的孔雀鱼有慢性毒性。由于死亡率,在大约64周的研究后,在第443天终止了150 mg/L组的核心研究动物的暴露,并将鱼维持在暴露系统中的2,2-双(溴甲基)- 1,3-丙二醇无水中,直到69周时研究结束。名义暴露浓度为24、60和150 mg/L,实际水族箱水暴露浓度分别为20.0、53.5和139.0 mg/L 2,2-二(溴甲基)- 1,3-丙二醇。对照组和暴露组在体重或长度上没有与治疗相关的差异。9个月时,1名24 mg/L男性和1名150 mg/L男性出现肝细胞腺瘤。在核心研究中,150 mg/L男性肝细胞腺瘤或肝癌(合并)的发生率高于对照组;两名150 mg/L男性和一名150 mg/L女性出现多发性腺瘤。胆管瘤发生在少数暴露的男性和女性。在停止暴露研究中,150mg /L的男性肝细胞腺瘤(包括多发性)和肝细胞癌的发生率高于对照组。150 mg/L女性组发生胆管瘤1例,胆管癌1例。在MEDAKA进行的为期14个月的研究:暴露于2,2-双(溴甲基)-1,3-丙二醇并没有导致任何显著的存活率降低,尽管60和150 mg/L核心研究组的鱼类死亡率略高于对照组和24 mg/L组。重新分配后,60和150 mg/L核心组的medaka死亡率比相应的停止暴露组略有增加。名义暴露浓度为24、60和150 mg/L,实际暴露浓度分别为19.4、56.9和137.8 mg/L 2,2-二(溴甲基)- 1,3-丙二醇。60和150 mg/L组的核心研究动物的体长和体重均显著大于对照组鱼。在核心研究中,150 mg/L的男性肝细胞腺瘤或癌(合并)的发生率增加。胆管癌发生在少数暴露的雄性和雌性中,除一例外,其余均发生在150毫克/升的鱼类中。 一个胆管瘤发生在150mg /L的女性中,一个发生在对照女性中。在停止暴露研究中,与对照组相比,150 mg/L男性组以及60和150 mg/L女性组的肝细胞腺瘤或癌(合并)发生率略有增加。胆管癌发生在150 mg/L组的一名男性和一名女性以及一名对照女性。硝基甲烷——对孔雀鱼为期16个月的研究:虽然在许多情况下,死亡原因无法确定,但70毫克/升的硝基甲烷组的死亡率似乎表明,这种水平的硝基甲烷暴露是慢性毒性的。所有处理的孔雀鱼在离开处理水族箱并停止暴露后的存活率相似,证实了这一点。由于70 mg/L核心研究组的鱼死亡率很高,这些鱼被从治疗中移除(第396天),并在大约57周的研究后固定下来进行组织学分析。对照组和其他暴露组在70周时处死。名义暴露浓度为10、30和70 mg/L时,硝基甲烷的实际暴露浓度分别为9.9、28.7和66.4 mg/L。对照组和暴露组在体长或体重方面没有与治疗相关的差异。在MEDAKA进行的为期13个月的研究:水族箱中的硝基甲烷支持了大量微动物的生长,如果不经常清洁,就会影响水质和处理浓度。为了保持可接受的水质和处理浓度,可能受到微型动物快速增长的影响,研究水族箱每天刷一次水,虹吸三次。由于这种频繁的活动,许多鱼可能因机械损伤而死亡。不幸的是,在许多情况下,死亡原因无法得到确认;据信,这种活动造成的死亡率在不同治疗方法中大致相同,不应影响不同治疗方法之间的生存率比较。根据本研究的死亡率和先前的寿命评估,本研究的生命阶段在孵化后约13.5个月结束。名义暴露浓度为10、20和40 mg/L时,硝基甲烷的实际暴露浓度分别为9.3、20.8和41.7 mg/L。在9个月的中期评估中,对照组和暴露组在体长或体重方面没有发现差异。由于死亡率的原因,在9个月时,在核心研究水族箱和停止暴露水族箱中分布的鱼数量不等。在13个月时发现长度和体重的差异。这一发现的生物学意义尚不清楚。9个月时,一名40 mg/L的男性发生单发胆管癌。肝细胞腺瘤发生于2例20 mg/L男性和1例40 mg/L女性。在核心研究中,20 mg/L的男性中出现了1例胆管瘤,并且在少数暴露的男性中发现了胆管癌,但在对照男性中没有发生胆管癌。1,2,3-三氯丙烷在孔雀鱼中的16个月研究:暴露的孔雀鱼在9个月时的存活率低于对照组。18.0 mg/L组6个月生存率明显降低,4.5和9.0 mg/L组7个月生存率明显降低。在9个月中期评估的1个月内,18.0 mg/L核心研究组的生存率显著降低,在9个月至研究终止期间,该组的死亡率为42.6%。名义暴露浓度为4.5、9.0和18.0 mg/L,实际暴露浓度分别为4.4、8.8和18.2 mg/L。在18.0 mg/L的核心研究组中,孔雀鱼明显比对照组更长,体重也更重。在18.0毫克/升停止接触组的鱼也比对照组重。研究期间鱼类的死亡率导致分布在核心研究和停止暴露水族馆的个体数量不等,在9个月。这似乎影响了研究结束时测量的鱼的长度和重量(即,较小的鱼缸种群允许鱼长得更多)。在对照组和18.0 mg/L的鱼之间观察到的体重和长度的差异很可能是18.0 mg/L水族箱中鱼类数量减少的产物。9个月时,一名4.5 mg/L男性患者出现了多发肝细胞腺瘤,另一名对照男性患者出现了一例肝细胞腺瘤。在核心研究中,暴露组男性和女性中胆管细胞瘤和肝细胞瘤的发生率均有所增加。胆管瘤和胆管癌见于一些暴露的男性和女性。在停止暴露研究中,18.0 mg/L的男性肝细胞肿瘤发生率增加,18.0 mg/L的女性胆管细胞肿瘤发生率增加。(抽象截断)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NTP carcinogenesis studies of 2,2-bis(bromomethyl)-1,3-propanediol, nitromethane, and 1,2,3-trichloropropane (cas nos. 3296-90-0, 75-52-5, and 96-18-4) in guppies (Poecilia reticulata) and medaka (Oryzias latipes) (Waterborne Studies).

The NTP chose to initiate studies in fish as an exploration of alternate or additional models for examining chemical toxicity and carcinogenicity. The use of small fish species in carcinogenicity testing offered potential advantages as a bioassay test system, including significant savings in cost and time over rodent studies. Large numbers of small fish could be easily maintained in a limited area. The two species chosen for study were guppy (Poecilia reticulata) and medaka (Oryzias latipes), both of which are hardy, easily maintained, and have a low occurrence of background lesions. The three chemicals chosen for study in fish had already been studied by the NTP in rodents, permitting a comparison of results between the two models. Two of the chemicals used (2,2-bis(bromomethyl)-1,3-propanediol and 1,2,3-trichloropropane) were mutagenic and multisite carcinogens in rats and mice. The third chemical, nitromethane, was nonmutagenic with a more modest carcinogenic response in rodents. Male and female guppies and medaka were exposed to 2,2-bis(bromomethyl)- 1,3-propanediol (greater than 99% pure), nitromethane, (greater than 99% pure), or 1,2,3-trichloropropane (99% pure) in aquaria water for up to 16 months. OVERALL STUDY DESIGN: Groups of approximately 220 guppies (two replicates of 110) were maintained in aquaria water containing nominal concentrations of 0, 24, 60, or 150 mg/L 2,2-bis(bromomethyl)-1,3-propanediol; 0, 10, 30, or 70 mg/L nitromethane; or 0, 4.5, 9.0, or 18.0 mg/L 1,2,3-trichloropropane. Groups of approximately 340 medaka (two replicates of 170) were maintained in aquaria water containing 0, 24, 60, or 150 mg/L 2,2-bis(bromomethyl)-1,3-propanediol; 0, 10, 20, or 40 mg/L nitromethane; or 0, 4.5, 9.0, or 18.0 mg/L 1,2,3-trichloropropane. The overall study durations were 16 months for all guppy studies, 14 months for 2,2-bis(bromomethyl)-1,3-propanediol-exposed medaka, and 13 months for nitromethane- and 1,2,3-trichloropropane-exposed medaka. Ten guppies and 10 medaka from each group replicate were sacrificed at 9 months for histopathologic analysis. Approximately one third of the remaining fish from each group were placed in chemical-free water at 9 months and constituted a stop-exposure study component. The remainder of the fish were exposed for the duration of the study and constituted the core study component. A stop-exposure component was added to determine if stopping the exposure at 9 months and transferring to chemical-free aquaria might allow for better survival and tumor development. The sex of guppies and medaka was determined at histopathologic analysis. 2,2-BIS(BROMOMETHYL)-1,3-PROPANEDIOL - 16-MONTH STUDY IN GUPPIES: 2,2-Bis(bromomethyl)-1,3-propanediol was chronically toxic to guppies in the 60 and 150 mg/L core and stop-exposure groups. Due to mortality, exposure of core study animals in the 150 mg/L group was terminated on day 443, after approximately 64 weeks on study, and fish were maintained in 2,2-bis(bromomethyl)- 1,3-propanediol-free water in the exposure system until the end of the study at 69 weeks. Nominal exposure concentrations of 24, 60, and 150 mg/L provided actual aquaria water exposure concentrations of 20.0, 53.5, and 139.0 mg/L 2,2-bis(bromomethyl)- 1,3-propanediol, respectively. There were no treatment-related differences between the control and exposed groups in body weights or lengths. At 9 months, hepatocellular adenomas occurred in one 24 mg/L male and in one 150 mg/L male. In the core study, the incidence of hepatocellular adenoma or carcinoma (combined) in 150 mg/L males was greater than that in the controls; multiple adenomas occurred in two 150 mg/L males and in one 150 mg/L female. Cholangioma occurred in a small number of exposed males and females. In the stop-exposure study, incidences of hepatocellular adenoma (including multiple) and of hepatocellular carcinoma were greater in 150 mg/L males than in controls. One cholangioma and one cholangiocarcinoma occurred in the 150 mg/L female group. 14-MONTH STUDY IN MEDAKA: Exposure to 2,2-bis(bromomethyl)-1,3-propanediol did not result in any significant reduction in survival, although the mortality of fish was somewhat greater in the 60 and 150 mg/L core study groups than in the control and 24 mg/L groups. After reallocation, mortality of medaka in the 60 and 150 mg/L core groups was slightly increased over the corresponding stop-exposure groups. Nominal exposure concentrations of 24, 60, and 150 mg/L provided actual exposure concentrations of 19.4, 56.9, and 137.8 mg/L 2,2-bis(bromomethyl)- 1,3-propanediol, respectively. Core study animals in the 60 and 150 mg/L groups were significantly larger, in both body length and weight, than control group fish. In the core study, the incidence of hepatocellular adenoma or carcinoma (combined) was increased in 150 mg/L males. Cholangiocarcinomas occurred in a few exposed males and females, with all but one occurring in 150 mg/L fish. One cholangioma occurred in a 150 mg/L female, and one occurred in a control female. In the stop-exposure study, incidences of hepatocellular adenoma or carcinoma (combined) were marginally increased in the 150 mg/L group of males and in the 60 and 150 mg/L groups of females as compared with controls. Cholangiocarcinoma occurred in one male and one female in the 150 mg/L groups and in one control female. NITROMETHANE - 16-MONTH STUDY IN GUPPIES: Although the cause of death could not be confirmed in many cases, mortality in the 70 mg/L groups appeared to indicate that this level of nitromethane exposure was chronically toxic. This is confirmed by the similar survival rate of guppies from all treatments following removal from treatment aquaria and placement in stop-exposure. Due to the high mortality of fish in the 70 mg/L core study groups, these fish were removed from treatment (day 396) and fixed for histological analyses after approximately 57 weeks on study. The controls and other exposed groups were sacrificed at 70 weeks. Nominal exposure concentrations of 10, 30, and 70 mg/L provided actual exposure concentrations of 9.9, 28.7, and 66.4 mg/L nitromethane, respectively. There were no treatment-related differences between the control and exposed groups in body lengths or weights. 13-MONTH STUDY IN MEDAKA: Nitromethane in the aquaria supported a substantial microfaunal growth which, without frequent cleaning, affected water quality and treatment concentrations. To maintain acceptable water quality and treatment concentrations potentially affected by the rapid microfaunal growth, the study aquaria were brushed once and siphoned three times each day. Due to this frequent activity, a number of fish probably died due to mechanical injury. Unfortunately, the cause of death could not be confirmed in many cases; the mortality from this activity is believed to have been approximately uniform among treatments and should not have affected the comparison of survival between treatments. Based on mortality in this study and the previous life-span evaluation, the life phase of this study was terminated approximately 13.5 months after hatching. Nominal exposure concentrations of 10, 20, and 40 mg/L resulted in actual exposure concentrations of 9.3, 20.8, and 41.7 mg/L nitromethane, respectively. No differences between control and exposed groups were found in body lengths or weights at the 9-month interim evaluation. Due to mortality, unequal numbers of fish were distributed among the core study and stop-exposure aquaria at 9 months. Differences in lengths and weights were found at 13 months. The biological significance of this finding is unknown. At 9 months, a single cholangiocarcinoma occurred in a 40 mg/L male. Hepatocellular adenomas occurred in two 20 mg/L males and in one 40 mg/L female. In the core study, one cholangioma occurred in a 20 mg/L male, and cholangiocarcinomas were seen in a few exposed males, but none occurred in control males. 1,2,3-TRICHLOROPROPANE - 16-MONTH STUDY IN GUPPIES: The survival of exposed guppies was less than that of the control group at 9 months. Reduced survival was evident at 6 months in the 18.0 mg/L groups and at 7 months in the 4.5 and 9.0 mg/L groups. Survival was significantly reduced in the 18.0 mg/L core study group within 1 month of the 9-month interim evaluation, and mortality in this group was 42.6% between 9 months and study termination. Nominal exposure concentrations of 4.5, 9.0, and 18.0 mg/L resulted in actual exposure concentrations of 4.4, 8.8, and 18.2 mg/L 1,2,3-trichloropropane, respectively. Guppies in the 18.0 mg/L core study group were significantly longer and weighed more than the controls. Fish in the 18.0 mg/L stop-exposure group also weighed more than the controls. Mortality of fish during the study resulted in unequal numbers of individuals distributed to core study and stop-exposure aquaria at 9 months. This appears to have influenced the length and weight of fish measured at study termination (i.e., the smaller tank population allowed the fish to grow more). Observed differences in weight and length between controls and 18.0 mg/L fish was most likely an artifact of the reduced numbers of fish in the 18.0 mg/L aquaria. At 9 months, multiple hepatocellular adenomas occurred in one 4.5 mg/L male, and one hepatocellular adenoma occurred in a control male. In the core study, increased incidences of cholangiocellular (bile duct) and hepatocellular neoplasms occurred in exposed groups of males and females. Cholangioma and cholangiocarcinoma were seen in several exposed males and females. In the stop-exposure study, increased incidences of hepatocellular neoplasms occurred in 18.0 mg/L males and increased incidences of cholangiocellular (bile duct) neoplasms occurred in 18.0 mg/L females. (ABSTRACT TRUNCATED)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Toxicology and carcinogenesis study of triclosan administered dermally to B6C3F1/N mice. Toxicology and carcinogenesis studies of black cohosh root extract (CASRN 84776-26-1) administered by gavage to Sprague Dawley (Hsd:Sprague Dawley SD) rats and female B6C3F1/N mice. Toxicology and carcinogenesis studies of an isomeric mixture of tris(chloropropyl) phosphate administered in feed to Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice. Toxicology and carcinogenesis studies of di(2-ethylhexyl) phthalate administered in feed to Sprague Dawley (Hsd:Sprague Dawley SD) rats. Toxicology and carcinogenesis studies of sodium tungstate dihydrate in Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice (drinking water studies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1