Bim和其他Bcl-2家族成员在自身免疫性和退行性疾病中的作用

Peter Hughes, Philippe Bouillet, Andreas Strasser
{"title":"Bim和其他Bcl-2家族成员在自身免疫性和退行性疾病中的作用","authors":"Peter Hughes,&nbsp;Philippe Bouillet,&nbsp;Andreas Strasser","doi":"10.1159/000090773","DOIUrl":null,"url":null,"abstract":"<p><p>Apoptosis is essential for the development, function and homeostasis of the immune system. Experiments with transgenic and gene knock-out mice have shown that defects in the control of apoptosis in the hematopoietic system can promote the development of autoimmunity or hematological malignancy. In contrast, excessive apoptosis of normally long-lived hemopoietic cells can lead to lymphopenia and immunodeficiency. In mammals, cell death in response to developmental cues and many cell stress signals is regulated by the opposing factions of the Bcl-2 family of proteins. In particular, the pro-apoptotic subgroup called BH3-only proteins, which includes Bim, is critical in the initiation of apoptosis in response to many death stimuli. Bim has been found to be an important regulator of the negative selection of B lymphocytes in the bone marrow and of T lymphocytes both in the thymus and the periphery. Mice lacking Bim accumulate self-reactive lymphocytes, develop autoantibodies and on certain genetic backgrounds succumb to SLE-like autoimmune disease. Abnormalities in Bim expression and the thymic deletion of auto-reactive lymphocytes have also been implicated as a component of the complex, polygenic predisposition to autoimmune diabetes seen in NOD mice. Bim is also an essential regulator of T lymphocyte apoptosis during the termination of an immune response. This chapter focuses on the role of Bim in the development and function of the immune system and its potential role in autoimmunity. Degenerative disorders due to increased apoptosis mediated by Bim are also discussed.</p>","PeriodicalId":81058,"journal":{"name":"Current directions in autoimmunity","volume":"9 ","pages":"74-94"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000090773","citationCount":"74","resultStr":"{\"title\":\"Role of Bim and other Bcl-2 family members in autoimmune and degenerative diseases.\",\"authors\":\"Peter Hughes,&nbsp;Philippe Bouillet,&nbsp;Andreas Strasser\",\"doi\":\"10.1159/000090773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apoptosis is essential for the development, function and homeostasis of the immune system. Experiments with transgenic and gene knock-out mice have shown that defects in the control of apoptosis in the hematopoietic system can promote the development of autoimmunity or hematological malignancy. In contrast, excessive apoptosis of normally long-lived hemopoietic cells can lead to lymphopenia and immunodeficiency. In mammals, cell death in response to developmental cues and many cell stress signals is regulated by the opposing factions of the Bcl-2 family of proteins. In particular, the pro-apoptotic subgroup called BH3-only proteins, which includes Bim, is critical in the initiation of apoptosis in response to many death stimuli. Bim has been found to be an important regulator of the negative selection of B lymphocytes in the bone marrow and of T lymphocytes both in the thymus and the periphery. Mice lacking Bim accumulate self-reactive lymphocytes, develop autoantibodies and on certain genetic backgrounds succumb to SLE-like autoimmune disease. Abnormalities in Bim expression and the thymic deletion of auto-reactive lymphocytes have also been implicated as a component of the complex, polygenic predisposition to autoimmune diabetes seen in NOD mice. Bim is also an essential regulator of T lymphocyte apoptosis during the termination of an immune response. This chapter focuses on the role of Bim in the development and function of the immune system and its potential role in autoimmunity. Degenerative disorders due to increased apoptosis mediated by Bim are also discussed.</p>\",\"PeriodicalId\":81058,\"journal\":{\"name\":\"Current directions in autoimmunity\",\"volume\":\"9 \",\"pages\":\"74-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000090773\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current directions in autoimmunity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000090773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current directions in autoimmunity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000090773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

细胞凋亡对免疫系统的发育、功能和稳态至关重要。转基因和基因敲除小鼠实验表明,造血系统细胞凋亡控制缺陷可促进自身免疫或血液恶性肿瘤的发展。相反,正常长寿的造血细胞过度凋亡可导致淋巴细胞减少和免疫缺陷。在哺乳动物中,响应发育线索和许多细胞应激信号的细胞死亡是由Bcl-2蛋白家族的对立派系调节的。特别是,被称为BH3-only蛋白的促凋亡亚群,其中包括Bim,在响应许多死亡刺激的细胞凋亡启动中起关键作用。已发现Bim是骨髓中B淋巴细胞和胸腺及外周T淋巴细胞负选择的重要调节因子。缺乏Bim的小鼠会积累自身反应性淋巴细胞,产生自身抗体,并在某些遗传背景下屈服于slea样自身免疫性疾病。Bim表达异常和自身反应性淋巴细胞胸腺缺失也被认为是NOD小鼠自身免疫性糖尿病复杂的多基因易感性的组成部分。在免疫应答终止过程中,Bim也是T淋巴细胞凋亡的重要调节因子。本章重点介绍Bim在免疫系统的发展和功能中的作用及其在自身免疫中的潜在作用。还讨论了由Bim介导的细胞凋亡增加引起的退行性疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of Bim and other Bcl-2 family members in autoimmune and degenerative diseases.

Apoptosis is essential for the development, function and homeostasis of the immune system. Experiments with transgenic and gene knock-out mice have shown that defects in the control of apoptosis in the hematopoietic system can promote the development of autoimmunity or hematological malignancy. In contrast, excessive apoptosis of normally long-lived hemopoietic cells can lead to lymphopenia and immunodeficiency. In mammals, cell death in response to developmental cues and many cell stress signals is regulated by the opposing factions of the Bcl-2 family of proteins. In particular, the pro-apoptotic subgroup called BH3-only proteins, which includes Bim, is critical in the initiation of apoptosis in response to many death stimuli. Bim has been found to be an important regulator of the negative selection of B lymphocytes in the bone marrow and of T lymphocytes both in the thymus and the periphery. Mice lacking Bim accumulate self-reactive lymphocytes, develop autoantibodies and on certain genetic backgrounds succumb to SLE-like autoimmune disease. Abnormalities in Bim expression and the thymic deletion of auto-reactive lymphocytes have also been implicated as a component of the complex, polygenic predisposition to autoimmune diabetes seen in NOD mice. Bim is also an essential regulator of T lymphocyte apoptosis during the termination of an immune response. This chapter focuses on the role of Bim in the development and function of the immune system and its potential role in autoimmunity. Degenerative disorders due to increased apoptosis mediated by Bim are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cellular mechanisms of TNF function in models of inflammation and autoimmunity. Posttranscriptional regulation of TNF mRNA: a paradigm of signal-dependent mRNA utilization and its relevance to pathology. The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. Role of TNF in pathologies induced by nuclear factor kappaB deficiency. Type I interferon: a new player in TNF signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1