{"title":"螺旋形成的热力学。","authors":"George I Makhatadze","doi":"10.1016/S0065-3233(05)72008-8","DOIUrl":null,"url":null,"abstract":"<p><p>The alpha-helix was the first proposed and experimentally confirmed secondary structure. The elegant simplicity of the alpha-helical structure, stabilized by hydrogen bonding between the backbone carbonyl oxygen and the peptide amide four residues away, has captivated the scientific community. In proteins, alpha-helices are also stabilized by the so-called capping interactions that occur at both the C- and the N-termini of the helix. This chapter provides a brief historical overview of the thermodynamic studies of the energetics of helix formation, and reviews recent progress in our understanding of the thermodynamics of helix formation.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"72 ","pages":"199-226"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(05)72008-8","citationCount":"34","resultStr":"{\"title\":\"Thermodynamics Of alpha-Helix Formation.\",\"authors\":\"George I Makhatadze\",\"doi\":\"10.1016/S0065-3233(05)72008-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The alpha-helix was the first proposed and experimentally confirmed secondary structure. The elegant simplicity of the alpha-helical structure, stabilized by hydrogen bonding between the backbone carbonyl oxygen and the peptide amide four residues away, has captivated the scientific community. In proteins, alpha-helices are also stabilized by the so-called capping interactions that occur at both the C- and the N-termini of the helix. This chapter provides a brief historical overview of the thermodynamic studies of the energetics of helix formation, and reviews recent progress in our understanding of the thermodynamics of helix formation.</p>\",\"PeriodicalId\":51216,\"journal\":{\"name\":\"Advances in Protein Chemistry\",\"volume\":\"72 \",\"pages\":\"199-226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0065-3233(05)72008-8\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Protein Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/S0065-3233(05)72008-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Protein Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S0065-3233(05)72008-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The alpha-helix was the first proposed and experimentally confirmed secondary structure. The elegant simplicity of the alpha-helical structure, stabilized by hydrogen bonding between the backbone carbonyl oxygen and the peptide amide four residues away, has captivated the scientific community. In proteins, alpha-helices are also stabilized by the so-called capping interactions that occur at both the C- and the N-termini of the helix. This chapter provides a brief historical overview of the thermodynamic studies of the energetics of helix formation, and reviews recent progress in our understanding of the thermodynamics of helix formation.