嗅觉鞘细胞与星形胶质细胞的相互作用可能是修复脊髓束损伤的关键:“通路假说”。

Journal of Neurocytology Pub Date : 2005-09-01 Epub Date: 2006-07-13 DOI:10.1007/s11068-005-8361-1
Ying Li, Daqing Li, Geoffrey Raisman
{"title":"嗅觉鞘细胞与星形胶质细胞的相互作用可能是修复脊髓束损伤的关键:“通路假说”。","authors":"Ying Li,&nbsp;Daqing Li,&nbsp;Geoffrey Raisman","doi":"10.1007/s11068-005-8361-1","DOIUrl":null,"url":null,"abstract":"<p><p>Transplantation of cultured adult olfactory ensheathing cells has been shown to induce anatomical and functional repair of lesions of the adult rat spinal cord and spinal roots. Histological analysis of olfactory ensheathing cells, both in their normal location in the olfactory nerves and also after transplantation into spinal cord lesions, shows that they provide channels for the growth of regenerating nerve fibres. These channels have an outer, basal lamina-lined surface apposed by fibroblasts, and an inner, naked surface in contact with the nerve fibres. A crucial property of olfactory ensheathing cells, in which they differ from Schwann cells, is their superior ability to interact with astrocytes. When confronted with olfactory ensheathing cells the superficial astrocytic processes, which form the glial scar after lesions, change their configuration so that their outer pial surfaces are reflected in continuity with the outer surfaces of the olfactory ensheathing cells. The effect is to open a door into the central nervous system. We propose that this formation of a bridging pathway may be the crucial event by which transplanted olfactory ensheathing cells allow the innate growth capacity of severed adult axons to be translated into regeneration across a lesion so that functionally valuable connections can be established.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"343-51"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8361-1","citationCount":"89","resultStr":"{\"title\":\"Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the 'pathway hypothesis'.\",\"authors\":\"Ying Li,&nbsp;Daqing Li,&nbsp;Geoffrey Raisman\",\"doi\":\"10.1007/s11068-005-8361-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transplantation of cultured adult olfactory ensheathing cells has been shown to induce anatomical and functional repair of lesions of the adult rat spinal cord and spinal roots. Histological analysis of olfactory ensheathing cells, both in their normal location in the olfactory nerves and also after transplantation into spinal cord lesions, shows that they provide channels for the growth of regenerating nerve fibres. These channels have an outer, basal lamina-lined surface apposed by fibroblasts, and an inner, naked surface in contact with the nerve fibres. A crucial property of olfactory ensheathing cells, in which they differ from Schwann cells, is their superior ability to interact with astrocytes. When confronted with olfactory ensheathing cells the superficial astrocytic processes, which form the glial scar after lesions, change their configuration so that their outer pial surfaces are reflected in continuity with the outer surfaces of the olfactory ensheathing cells. The effect is to open a door into the central nervous system. We propose that this formation of a bridging pathway may be the crucial event by which transplanted olfactory ensheathing cells allow the innate growth capacity of severed adult axons to be translated into regeneration across a lesion so that functionally valuable connections can be established.</p>\",\"PeriodicalId\":16494,\"journal\":{\"name\":\"Journal of Neurocytology\",\"volume\":\"34 3-5\",\"pages\":\"343-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11068-005-8361-1\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurocytology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11068-005-8361-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2006/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurocytology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11068-005-8361-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2006/7/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

培养的成年嗅鞘细胞移植已被证明可诱导成年大鼠脊髓和脊髓根损伤的解剖和功能修复。嗅觉鞘细胞在嗅神经中的正常位置以及移植到脊髓病变后的组织学分析表明,它们为再生神经纤维的生长提供了通道。这些通道有一个由成纤维细胞排列的外层基底层表面和一个与神经纤维接触的内层裸露表面。嗅觉鞘细胞与雪旺细胞不同的一个关键特性是,它们具有与星形胶质细胞相互作用的优越能力。当与嗅鞘细胞接触时,病变后形成胶质瘢痕的浅表星形细胞突改变其结构,使其外枕表面与嗅鞘细胞的外表面连续反映。其效果是打开一扇通往中枢神经系统的门。我们提出,这种桥接通路的形成可能是移植的嗅鞘细胞允许被切断的成年轴突的先天生长能力转化为跨越病变的再生的关键事件,从而可以建立功能上有价值的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the 'pathway hypothesis'.

Transplantation of cultured adult olfactory ensheathing cells has been shown to induce anatomical and functional repair of lesions of the adult rat spinal cord and spinal roots. Histological analysis of olfactory ensheathing cells, both in their normal location in the olfactory nerves and also after transplantation into spinal cord lesions, shows that they provide channels for the growth of regenerating nerve fibres. These channels have an outer, basal lamina-lined surface apposed by fibroblasts, and an inner, naked surface in contact with the nerve fibres. A crucial property of olfactory ensheathing cells, in which they differ from Schwann cells, is their superior ability to interact with astrocytes. When confronted with olfactory ensheathing cells the superficial astrocytic processes, which form the glial scar after lesions, change their configuration so that their outer pial surfaces are reflected in continuity with the outer surfaces of the olfactory ensheathing cells. The effect is to open a door into the central nervous system. We propose that this formation of a bridging pathway may be the crucial event by which transplanted olfactory ensheathing cells allow the innate growth capacity of severed adult axons to be translated into regeneration across a lesion so that functionally valuable connections can be established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord. Acetylcholine receptors and nerve terminal distribution at the neuromuscular junction of long-term regenerated muscle fibers. Progressive white matter pathology in the spinal cord of transgenic mice expressing mutant (P301L) human tau. Potassium currents in primary cultured astrocytes from the rat corpus callosum. Reduction in parvalbumin expression in the zona incerta after 6OHDA lesion in rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1