面向过程多变量建模和知识发现的轻注意力混合基础深度学习体系结构

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-06-01 DOI:10.1016/j.compchemeng.2023.108259
Yue Li , Lijuan Hu , Ning Li , Weifeng Shen
{"title":"面向过程多变量建模和知识发现的轻注意力混合基础深度学习体系结构","authors":"Yue Li ,&nbsp;Lijuan Hu ,&nbsp;Ning Li ,&nbsp;Weifeng Shen","doi":"10.1016/j.compchemeng.2023.108259","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A Light Attention-Mixed-Base Deep Learning Architecture (LAMBDA) is developed to simultaneously achieve process knowledge discovery and high-accuracy multivariable modeling. By organizing multiple network bases and a novel light attention mechanism in a special way, the proposed LAMBDA is capable to learn different factors affecting the chemical process outputs, i.e. the basic dynamic characteristics, transient disturbances and other unknown factors. Besides, a development procedure embedding a hyperparameter optimization framework—Optuna is performed to optimize the network architecture. Compared with baselines including </span>FNN<span>, CNN<span>, LSTM and Attention-LSTM, the new architecture displays an outstanding fitting capacity on the discharge </span></span></span>flowrates modeling of an actual deethanization process. The process knowledges extracted from the LAMBDA model parameters are also illustrated, which are valuable in the development of advanced process tasks. The proposed LAMDBA can fit any number of outputs without degrading the knowledge discovery ability, making itself potential in the modeling of complex chemical processes.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"174 ","pages":"Article 108259"},"PeriodicalIF":3.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Light Attention-Mixed-Base Deep Learning Architecture toward Process Multivariable Modeling and Knowledge Discovery\",\"authors\":\"Yue Li ,&nbsp;Lijuan Hu ,&nbsp;Ning Li ,&nbsp;Weifeng Shen\",\"doi\":\"10.1016/j.compchemeng.2023.108259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>A Light Attention-Mixed-Base Deep Learning Architecture (LAMBDA) is developed to simultaneously achieve process knowledge discovery and high-accuracy multivariable modeling. By organizing multiple network bases and a novel light attention mechanism in a special way, the proposed LAMBDA is capable to learn different factors affecting the chemical process outputs, i.e. the basic dynamic characteristics, transient disturbances and other unknown factors. Besides, a development procedure embedding a hyperparameter optimization framework—Optuna is performed to optimize the network architecture. Compared with baselines including </span>FNN<span>, CNN<span>, LSTM and Attention-LSTM, the new architecture displays an outstanding fitting capacity on the discharge </span></span></span>flowrates modeling of an actual deethanization process. The process knowledges extracted from the LAMBDA model parameters are also illustrated, which are valuable in the development of advanced process tasks. The proposed LAMDBA can fit any number of outputs without degrading the knowledge discovery ability, making itself potential in the modeling of complex chemical processes.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"174 \",\"pages\":\"Article 108259\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135423001291\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423001291","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

为了同时实现过程知识发现和高精度多变量建模,提出了一种轻注意力混合基础深度学习架构(LAMBDA)。通过组织多个网络基,并以一种特殊的方式采用一种新颖的光注意机制,所提出的LAMBDA能够学习影响化学过程输出的不同因素,即基本动态特性、瞬态扰动等未知因素。此外,还编写了嵌入超参数优化框架optuna的开发程序,对网络结构进行了优化。与FNN、CNN、LSTM和Attention-LSTM等基准模型相比,该模型对实际脱烷过程的流量模型具有较好的拟合能力。还说明了从LAMBDA模型参数中提取的过程知识,这些知识对开发高级过程任务很有价值。所提出的LAMDBA可以在不降低知识发现能力的情况下拟合任意数量的输出,使其在复杂化学过程的建模中具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Light Attention-Mixed-Base Deep Learning Architecture toward Process Multivariable Modeling and Knowledge Discovery

A Light Attention-Mixed-Base Deep Learning Architecture (LAMBDA) is developed to simultaneously achieve process knowledge discovery and high-accuracy multivariable modeling. By organizing multiple network bases and a novel light attention mechanism in a special way, the proposed LAMBDA is capable to learn different factors affecting the chemical process outputs, i.e. the basic dynamic characteristics, transient disturbances and other unknown factors. Besides, a development procedure embedding a hyperparameter optimization framework—Optuna is performed to optimize the network architecture. Compared with baselines including FNN, CNN, LSTM and Attention-LSTM, the new architecture displays an outstanding fitting capacity on the discharge flowrates modeling of an actual deethanization process. The process knowledges extracted from the LAMBDA model parameters are also illustrated, which are valuable in the development of advanced process tasks. The proposed LAMDBA can fit any number of outputs without degrading the knowledge discovery ability, making itself potential in the modeling of complex chemical processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1