ZHAO Wei-Guo , MIAO Xue-Xia , ZANG Bo , ZHANG Lin , PAN Yi-Le , HUANG Yong-Ping
{"title":"利用ISSR标记构建中国桑树品种指纹图谱及遗传多样性","authors":"ZHAO Wei-Guo , MIAO Xue-Xia , ZANG Bo , ZHANG Lin , PAN Yi-Le , HUANG Yong-Ping","doi":"10.1016/S0379-4172(06)60119-4","DOIUrl":null,"url":null,"abstract":"<div><p>The ISSR fingerprintings of 24 mulberry cultivars were constructed. Totally 80 bands were produced using 17 primers selected from 20 primers. Of them, 40 bands showed polymorphism. From the bands amplified, there were three independent ways to identify the mulberry varieties, such as unique ISSR markers, unique band patterns and a combination of the band patterns provided by different primers. ISSRs were very effective in differentiating the mulberry varieties. The mean genetic similarity coefficient, the mean Nei's gene diversity (<em>h</em>), and the mean Shannon's Information index (<em>I</em>) of mulberry cultivars were 0.8731, 0.1210, and 0.1942, respectively. This suggests that the genetic diversity of mulberry cultivars was low and the genetic base was narrow. Both UPGMA cluster and PCA (Principal Coordinates Analysis) analysis showed clear genetic relationships among the 24 mulberry cultivars. The major clusters were related to known pedigree relationships.</p></div>","PeriodicalId":100017,"journal":{"name":"Acta Genetica Sinica","volume":"33 9","pages":"Pages 851-860"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0379-4172(06)60119-4","citationCount":"12","resultStr":"{\"title\":\"Construction of Fingerprinting and Genetic Diversity of Mulberry Cultivars in China by ISSR Markers\",\"authors\":\"ZHAO Wei-Guo , MIAO Xue-Xia , ZANG Bo , ZHANG Lin , PAN Yi-Le , HUANG Yong-Ping\",\"doi\":\"10.1016/S0379-4172(06)60119-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ISSR fingerprintings of 24 mulberry cultivars were constructed. Totally 80 bands were produced using 17 primers selected from 20 primers. Of them, 40 bands showed polymorphism. From the bands amplified, there were three independent ways to identify the mulberry varieties, such as unique ISSR markers, unique band patterns and a combination of the band patterns provided by different primers. ISSRs were very effective in differentiating the mulberry varieties. The mean genetic similarity coefficient, the mean Nei's gene diversity (<em>h</em>), and the mean Shannon's Information index (<em>I</em>) of mulberry cultivars were 0.8731, 0.1210, and 0.1942, respectively. This suggests that the genetic diversity of mulberry cultivars was low and the genetic base was narrow. Both UPGMA cluster and PCA (Principal Coordinates Analysis) analysis showed clear genetic relationships among the 24 mulberry cultivars. The major clusters were related to known pedigree relationships.</p></div>\",\"PeriodicalId\":100017,\"journal\":{\"name\":\"Acta Genetica Sinica\",\"volume\":\"33 9\",\"pages\":\"Pages 851-860\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0379-4172(06)60119-4\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Genetica Sinica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379417206601194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Genetica Sinica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379417206601194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of Fingerprinting and Genetic Diversity of Mulberry Cultivars in China by ISSR Markers
The ISSR fingerprintings of 24 mulberry cultivars were constructed. Totally 80 bands were produced using 17 primers selected from 20 primers. Of them, 40 bands showed polymorphism. From the bands amplified, there were three independent ways to identify the mulberry varieties, such as unique ISSR markers, unique band patterns and a combination of the band patterns provided by different primers. ISSRs were very effective in differentiating the mulberry varieties. The mean genetic similarity coefficient, the mean Nei's gene diversity (h), and the mean Shannon's Information index (I) of mulberry cultivars were 0.8731, 0.1210, and 0.1942, respectively. This suggests that the genetic diversity of mulberry cultivars was low and the genetic base was narrow. Both UPGMA cluster and PCA (Principal Coordinates Analysis) analysis showed clear genetic relationships among the 24 mulberry cultivars. The major clusters were related to known pedigree relationships.