人卵巢癌高、低转移细胞系差异表达基因的鉴定及其染色体定位和功能分析

XU Shen-Hua, MU Han-Zhou, GU Lin-Hui, ZHU Chi-Hong, LIU Xiang-Lin
{"title":"人卵巢癌高、低转移细胞系差异表达基因的鉴定及其染色体定位和功能分析","authors":"XU Shen-Hua,&nbsp;MU Han-Zhou,&nbsp;GU Lin-Hui,&nbsp;ZHU Chi-Hong,&nbsp;LIU Xiang-Lin","doi":"10.1016/S0379-4172(06)60123-6","DOIUrl":null,"url":null,"abstract":"<div><p>Oligonucleotide microarrays were used to study the differences of gene expressions in high (H) and low (L) metastatic ovarian cancer cell lines and in normal ovarian tissues (C). Bioinformatics was used to identify novel genes and their functions as well as chromosomal localizations. A total of 409 genes were differentially expressed between the high and low metastatic ovarian cancer cell lines. Of them, 271 genes were up regulated (Signal Log Ratio[SLR] ≥1), and 138 genes were down regulated (SLR≤-1). Except one gene whose location was unknown, all these genes were localized randomly on all the chromosomes, with a majority of them localized to Chromosomes 1, 6, 2, 17, 3, 5 and 11. Chromosome 1 contained, 43 of them (10.7%), the most for a single chromosome. A total of 264 genes (64.7%) were localized on the short arm of the chromosome (q). Functional classification showed that the 104 (25.4%) genes coding for enzymes and enzyme regulators made up the largest functional group, followed by signal transduction activity genes (43, 10.5%), nucleic acid binding activity genes (42, 10.3%), and proteins binding activity genes (34, 8.3%). These four groups accounted for 54.5% of all the differentially expressed genes. In addition, the functions of 76 genes (18.6%) were unknown. Tumor metastasis is the result of a number of genes acting in concert. The four functional groups of genes classified among these genes and their abnormalities would be the focus of further studies on ovarian cancer metastasis.</p></div>","PeriodicalId":100017,"journal":{"name":"Acta Genetica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0379-4172(06)60123-6","citationCount":"3","resultStr":"{\"title\":\"Identification of Differentially Expressed Genes in the High and Low Metastatic Human Ovarian Cancer Cell Lines and Analyses of Their Chromosomal Localizations and Functions\",\"authors\":\"XU Shen-Hua,&nbsp;MU Han-Zhou,&nbsp;GU Lin-Hui,&nbsp;ZHU Chi-Hong,&nbsp;LIU Xiang-Lin\",\"doi\":\"10.1016/S0379-4172(06)60123-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oligonucleotide microarrays were used to study the differences of gene expressions in high (H) and low (L) metastatic ovarian cancer cell lines and in normal ovarian tissues (C). Bioinformatics was used to identify novel genes and their functions as well as chromosomal localizations. A total of 409 genes were differentially expressed between the high and low metastatic ovarian cancer cell lines. Of them, 271 genes were up regulated (Signal Log Ratio[SLR] ≥1), and 138 genes were down regulated (SLR≤-1). Except one gene whose location was unknown, all these genes were localized randomly on all the chromosomes, with a majority of them localized to Chromosomes 1, 6, 2, 17, 3, 5 and 11. Chromosome 1 contained, 43 of them (10.7%), the most for a single chromosome. A total of 264 genes (64.7%) were localized on the short arm of the chromosome (q). Functional classification showed that the 104 (25.4%) genes coding for enzymes and enzyme regulators made up the largest functional group, followed by signal transduction activity genes (43, 10.5%), nucleic acid binding activity genes (42, 10.3%), and proteins binding activity genes (34, 8.3%). These four groups accounted for 54.5% of all the differentially expressed genes. In addition, the functions of 76 genes (18.6%) were unknown. Tumor metastasis is the result of a number of genes acting in concert. The four functional groups of genes classified among these genes and their abnormalities would be the focus of further studies on ovarian cancer metastasis.</p></div>\",\"PeriodicalId\":100017,\"journal\":{\"name\":\"Acta Genetica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0379-4172(06)60123-6\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Genetica Sinica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379417206601236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Genetica Sinica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379417206601236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

寡核苷酸微阵列技术用于研究高(H)和低(L)转移卵巢癌细胞系与正常卵巢组织中基因表达的差异(C)。生物信息学用于鉴定新基因及其功能以及染色体定位。409个基因在高转移性和低转移性卵巢癌细胞系中存在差异表达。其中271个基因表达上调(信号对数比[SLR]≥1),138个基因表达下调(SLR≤-1)。除1个基因定位未知外,其余基因随机定位在所有染色体上,大部分定位在1、6、2、17、3、5和11号染色体上。1号染色体中含有43个(10.7%),是单个染色体中最多的。共有264个基因(64.7%)定位在染色体短臂上(q)。功能分类显示,编码酶和酶调节因子的基因104个(25.4%)构成了最大的功能群,其次是信号转导活性基因43个(10.5%)、核酸结合活性基因42个(10.3%)和蛋白质结合活性基因34个(8.3%)。这四组占所有差异表达基因的54.5%。此外,76个(18.6%)基因的功能未知。肿瘤转移是许多基因共同作用的结果。这些基因的四个功能群及其异常将是卵巢癌转移研究的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Differentially Expressed Genes in the High and Low Metastatic Human Ovarian Cancer Cell Lines and Analyses of Their Chromosomal Localizations and Functions

Oligonucleotide microarrays were used to study the differences of gene expressions in high (H) and low (L) metastatic ovarian cancer cell lines and in normal ovarian tissues (C). Bioinformatics was used to identify novel genes and their functions as well as chromosomal localizations. A total of 409 genes were differentially expressed between the high and low metastatic ovarian cancer cell lines. Of them, 271 genes were up regulated (Signal Log Ratio[SLR] ≥1), and 138 genes were down regulated (SLR≤-1). Except one gene whose location was unknown, all these genes were localized randomly on all the chromosomes, with a majority of them localized to Chromosomes 1, 6, 2, 17, 3, 5 and 11. Chromosome 1 contained, 43 of them (10.7%), the most for a single chromosome. A total of 264 genes (64.7%) were localized on the short arm of the chromosome (q). Functional classification showed that the 104 (25.4%) genes coding for enzymes and enzyme regulators made up the largest functional group, followed by signal transduction activity genes (43, 10.5%), nucleic acid binding activity genes (42, 10.3%), and proteins binding activity genes (34, 8.3%). These four groups accounted for 54.5% of all the differentially expressed genes. In addition, the functions of 76 genes (18.6%) were unknown. Tumor metastasis is the result of a number of genes acting in concert. The four functional groups of genes classified among these genes and their abnormalities would be the focus of further studies on ovarian cancer metastasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrastructure and Gene Mapping of the Albino Mutant al12 in Rice (Oryza sativa L.) Differential Expression of Endogenous Ferritin Genes and Iron Homeostasis Alteration in Transgenic Tobacco Overexpressing Soybean Ferritin Gene Analysis of the Phylogenetic Relationships Among Several Species of Gramineae Using ACGM Markers Powers of Multiple-Testing Procedures for Identification of Genes Significantly Differentially Expressed in Microarray Experiments Fluorescent Multiplex Amplification of Three X-STR Loci
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1