{"title":"雌激素药理浓度对3AO人卵巢癌细胞生长的影响","authors":"LI Zong-Bin, CHEN Yu-Xia, ZHAO Jie-Ying, LU Jian","doi":"10.1016/S0379-4172(06)60111-X","DOIUrl":null,"url":null,"abstract":"<div><p>During the past two decades, the knowledge of the molecular mechanism by which estrogens exert various functions in different tissues and organs has evolved rapidly. Recent reports demonstrated that estrogen could decrease the cell growth in several types of cancer cells, including ovarian cancer cells. Though experiments explored the possible mechanism of the inhibitory effect, the exact mechanism is responsible for the effect, which remains unclear. The ovary is the main source of the estrogen, estrogen receptor is expressed in several ovarian cell types, including ovarian surface epithelium, the tissue of origin of approximately 90% of the ovarian cancers. It was of great interest to analyze the effects of 17β-estradiol (E2) on apoptosis of ovarian cancer cells, and the identification of E2-regulated specific genes involved in epithelial proliferation apoptosis, thus may be a clue for understanding the progression of ovarian cancer and for the design of new target therapies. To elucidate the mechanism involved, effects of pharmacological concentrations of estrogen were studied in human ovarian cancer cell line 3AO cells. Inhibition of cellular growth of 3AO cells was seen with E2 at concentrations higher than 0.1 μmol/L. The estrogen receptor inhibitor ICI 182780 cannot block the inhibitory effect of E2. It was surprising to find that ICI 182780 itself can inhibit the growth of 3AO cells, and had a collaborative effect with E2. The decreased cell growth induced by E2 was shown to be apoptosis as analyzed by flow cytometry. ERβ was detected in the 3AO ovarian cancer cell line but not ERα. The expression of ERβ was weak, which may partially explain why high but not low dose of E2 needed to induce the apoptosis of 3AO cells. We also observed that membrane impermeable E2, E2-BSA have lost growth inhibitory on 3AO cells, which excluded the membrane effect of E2 as previously reported by many investigators. The p38 kinase inhibitor, SB203580 were partially protected 3AO cells against growth inhibition by E2, while inhibitor of JNK, SP600125 enhanced cell death induced by E2. These results showed that MAPK is implicated in cellular processes involving apoptosis.</p></div>","PeriodicalId":100017,"journal":{"name":"Acta Genetica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0379-4172(06)60111-X","citationCount":"5","resultStr":"{\"title\":\"Effects of Pharmacological Concentrations of Estrogens on Growth of 3AO Human Ovarian Cancer Cells\",\"authors\":\"LI Zong-Bin, CHEN Yu-Xia, ZHAO Jie-Ying, LU Jian\",\"doi\":\"10.1016/S0379-4172(06)60111-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the past two decades, the knowledge of the molecular mechanism by which estrogens exert various functions in different tissues and organs has evolved rapidly. Recent reports demonstrated that estrogen could decrease the cell growth in several types of cancer cells, including ovarian cancer cells. Though experiments explored the possible mechanism of the inhibitory effect, the exact mechanism is responsible for the effect, which remains unclear. The ovary is the main source of the estrogen, estrogen receptor is expressed in several ovarian cell types, including ovarian surface epithelium, the tissue of origin of approximately 90% of the ovarian cancers. It was of great interest to analyze the effects of 17β-estradiol (E2) on apoptosis of ovarian cancer cells, and the identification of E2-regulated specific genes involved in epithelial proliferation apoptosis, thus may be a clue for understanding the progression of ovarian cancer and for the design of new target therapies. To elucidate the mechanism involved, effects of pharmacological concentrations of estrogen were studied in human ovarian cancer cell line 3AO cells. Inhibition of cellular growth of 3AO cells was seen with E2 at concentrations higher than 0.1 μmol/L. The estrogen receptor inhibitor ICI 182780 cannot block the inhibitory effect of E2. It was surprising to find that ICI 182780 itself can inhibit the growth of 3AO cells, and had a collaborative effect with E2. The decreased cell growth induced by E2 was shown to be apoptosis as analyzed by flow cytometry. ERβ was detected in the 3AO ovarian cancer cell line but not ERα. The expression of ERβ was weak, which may partially explain why high but not low dose of E2 needed to induce the apoptosis of 3AO cells. We also observed that membrane impermeable E2, E2-BSA have lost growth inhibitory on 3AO cells, which excluded the membrane effect of E2 as previously reported by many investigators. The p38 kinase inhibitor, SB203580 were partially protected 3AO cells against growth inhibition by E2, while inhibitor of JNK, SP600125 enhanced cell death induced by E2. These results showed that MAPK is implicated in cellular processes involving apoptosis.</p></div>\",\"PeriodicalId\":100017,\"journal\":{\"name\":\"Acta Genetica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0379-4172(06)60111-X\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Genetica Sinica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037941720660111X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Genetica Sinica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037941720660111X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Pharmacological Concentrations of Estrogens on Growth of 3AO Human Ovarian Cancer Cells
During the past two decades, the knowledge of the molecular mechanism by which estrogens exert various functions in different tissues and organs has evolved rapidly. Recent reports demonstrated that estrogen could decrease the cell growth in several types of cancer cells, including ovarian cancer cells. Though experiments explored the possible mechanism of the inhibitory effect, the exact mechanism is responsible for the effect, which remains unclear. The ovary is the main source of the estrogen, estrogen receptor is expressed in several ovarian cell types, including ovarian surface epithelium, the tissue of origin of approximately 90% of the ovarian cancers. It was of great interest to analyze the effects of 17β-estradiol (E2) on apoptosis of ovarian cancer cells, and the identification of E2-regulated specific genes involved in epithelial proliferation apoptosis, thus may be a clue for understanding the progression of ovarian cancer and for the design of new target therapies. To elucidate the mechanism involved, effects of pharmacological concentrations of estrogen were studied in human ovarian cancer cell line 3AO cells. Inhibition of cellular growth of 3AO cells was seen with E2 at concentrations higher than 0.1 μmol/L. The estrogen receptor inhibitor ICI 182780 cannot block the inhibitory effect of E2. It was surprising to find that ICI 182780 itself can inhibit the growth of 3AO cells, and had a collaborative effect with E2. The decreased cell growth induced by E2 was shown to be apoptosis as analyzed by flow cytometry. ERβ was detected in the 3AO ovarian cancer cell line but not ERα. The expression of ERβ was weak, which may partially explain why high but not low dose of E2 needed to induce the apoptosis of 3AO cells. We also observed that membrane impermeable E2, E2-BSA have lost growth inhibitory on 3AO cells, which excluded the membrane effect of E2 as previously reported by many investigators. The p38 kinase inhibitor, SB203580 were partially protected 3AO cells against growth inhibition by E2, while inhibitor of JNK, SP600125 enhanced cell death induced by E2. These results showed that MAPK is implicated in cellular processes involving apoptosis.