{"title":"3,3',4,4',5-五氯联苯(PCB 126) (Cas No. 57465-28-8)和2,2',4,4',5,5'-六氯联苯(PCB 153) (Cas No. 35065-27-1)对雌性Harlan Sprague-Dawley大鼠的毒理学和致癌作用研究(灌食研究)。","authors":"","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>DIOXIN TOXIC EQUIVALENCY FACTOR EVALUATION OVERVIEW: Polyhalogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have the ability to bind to and activate the ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR). Structurally related compounds that bind to the AhR and exhibit biological actions similar to TCDD are commonly referred to as \"dioxin-like compounds\" (DLCs). Ambient human exposure to DLCs occurs through the ingestion of foods containing residues of DLCs that bio-concentrate through the food chain. Due to their lipophilicity and persistence, once internalized they accumulate in body tissues, mainly adipose, resulting in chronic lifetime human exposure. Since human exposure to DLCs always occurs as a complex mixture, the toxic equivalency factor (TEF) methodology has been developed as a mathematical tool to assess the health risk posed by complex mixtures of these compounds. The TEF methodology is a relative potency scheme that ranks the dioxin-like activity of a compound relative to TCDD, the most potent congener. This allows for the estimation of the potential dioxin-like activity of a mixture of chemicals, based on a common mechanism of action involving an initial binding of DLCs to the AhR. The toxic equivalency of DLCs was nominated for evaluation because of the widespread human exposure to DLCs and the lack of data on the adequacy of the TEF methodology for predicting relative potency for cancer risk. To address this, the National Toxicology Program conducted a series of 2-year bioassays in female Harlan Sprague-Dawley rats to evaluate the chronic toxicity and carcinogenicity of DLCs and structurally related polychlorinated biphenyls (PCBs) and mixtures of these compounds. 2-YEAR STUDY: The 2-year study of a binary mixture of PCB 126 and PCB 153 was designed to assess the carcinogenicity of a constant ratio mixture of PCB 126 and PCB 153. In addition, varying ratio mixture groups were used to assess the impact of increasing PCB 153 on the carcinogenicity of PCB 126. Dose groups were divided into two study arms (Figure 1). TCDD equivalent (TEQ) doses are based on the PCB 126 doses after adjustment for the PCB 126 TEF of 0.1. Groups of 81 (Groups 2, 3, 5, and 7) or 80 (Groups 4 and 6) female rats received a mixture of PCB 126 and PCB 153 in corn oil:acetone (99:1) by gavage 5 days per week for up to 105 weeks; a group of 81 female rats received the corn oil:acetone (99:1) vehicle only and served as the vehicle control (Group 1). Up to 10 rats per group were evaluated at 14, 31, and 53 weeks. Survival of all dosed groups was similar to that of the vehicle controls. The mean body weights of Groups 4 and 5 were generally less than those of the vehicle controls after week 25. The mean body weights of Group 6 were less after week 12, and those of Group 7 were less after week 8. Thyroid Hormone Concentrations: Alterations in serum thyroid hormone levels were evaluated at the 14-, 31-, and 53-week interim evaluations. In the constant ratio groups, serum total thyroxine (T(4)) and free T(4) generally showed a treatment-related decrease relative to controls. Serum total triiodothyronine (T(3)) exhibited a treatment-related increase at the 14-, 31-, and 53-week interim evaluations, but serum thyroid stimulating hormone (TSH) levels were increased at the 14-week time point only. In the varying ratio groups, the decrease in total and free T(4) was more pronounced in those groups dosed with the increasing proportion of PCB 153 at the 31- and 53-week time points. Hepatic Cell Proliferation Data: To evaluate hepatocyte replication, analysis of labeling of replicating hepatocytes with 5-bromo-2'-deoxyuridine was conducted at the 14-, 31-, and 53-week interim evaluations. At 31 and 53 weeks, a significant increase in the hepatocellular labeling index occurred in Group 7. In the varying ratio groups, the labeling index at the 53-week interim time point was significantly higher in Group 6, which had the highest proportion of PCB 153 compared to the other varying ratio groups. Cytochrome P450 Enzyme Activities: To evaluate the expression of known PCB 126-responsive genes, CYP1A1-associated 7-ethoxyresorufin-O-deethylase (EROD) and CYP1A2-associated acetanilide-4-hydroxylase (A4H) activities were evaluated at the 14-, 31-, and 53-week interim evaluations. In addition, PCB 153-inducible CYP2B-associated 7-pent-oxyresorufin-O-dealkylase (PROD) activity was analyzed. In the constant ratio Groups 2, 3, 5, and 7, hepatic and pulmonary EROD (CYP1A1) activities, hepatic A4H (CYP1A2) activities, and hepatic PROD (CYP2B) activities were significantly greater in all dosed groups compared to the vehicle controls at weeks 14, 31, and 53. In the varying ratio groups, hepatic EROD, A4H, and PROD activities at 14 weeks were higher in groups receiving a greater proportion of PCB 153 in the PCB mixture. At 31 and 53 weeks, hepatic CYP1A1 and CYP1A2 enzyme activities in Group 6 were generally lower than in Groups 4 and 5. Determinations of PCB 126 and PCB 153 Concentrations in Tissues: Concentrations of PCB 126 and PCB 153 were determined in fat, liver, lung, and blood at the 14-, 31-, and 53-week interim evaluations and at the end of the 2-year study (105 weeks). PCB 126 was not detectable in vehicle control animals, but increased with increasing dose of PCB 126 and duration of exposure; the highest concentrations were found in liver and fat, and lower levels were seen in lung and blood. Increasing the proportion of PCB 153 in the mixture relative to PCB 126 led to a general decrease in the amount of PCB 126 in liver and lung at the later time points, whereas in fat and blood, there was generally either no effect of PCB 153 on the disposition of PCB 126, or there was an increase in the amount of PCB 126 in the tissue. In vehicle control animals, PCB 153 was detectable in the fat at all time points, in the lung at all time points except 53 weeks, and in the liver and blood at 2 years. PCB 153 was measurable in all examined tissues of treated animals, with the highest concentrations found in fat at the end of the 2-year study in groups administered the highest doses of PCB 153. Pathology and Statistical Analyses -- Constant Ratio Mixture of PCB 126 and PCB 153: At 14, 31, and 53 weeks, the absolute and relative liver weights of all dosed groups were generally greater than those of the vehicle controls. Exposure to the PCB mixture led to significant toxicity in the liver. At 14 weeks, the incidences of several nonneoplastic liver lesions were increased compared to the vehicle controls including hepatocyte hypertrophy, pigmentation, multinucleated hepatocytes, and diffuse fatty change. The spectrum and severity of effects increased with dose and duration of exposure. At the end of the 2-year study, there were significantly increased incidences and severities of toxic hepatopathy characterized by hepatocyte hypertrophy, multinucleated hepatocytes, pigmentation, diffuse and focal fatty change, eosinophilic focus, nodular hyperplasia, cholangiofibrosis, oval cell hyperplasia, bile duct cysts, bile duct hyperplasia, necrosis, and portal fibrosis. Significantly increased incidences of hepatocellular adenoma, cholangiocarcinoma, and hepatocholangioma were observed in the study. In addition, two animals in the highest dose group had hepatocellular carcinoma. The incidences of these lesions generally exceeded the historical vehicle control ranges. At 2 years, a significantly increased incidence of cystic keratinizing epithelioma of the lung was observed in Group 7. In addition, single occurrences of squamous cell carcinoma were seen in the top two dose groups. Nonneoplastic effects whose incidences were increased in the lung included bronchiolar metaplasia of the alveolar epithelium and squamous metaplasia. Significantly increased incidences of squamous cell carcinoma (gingival) of the oral mucosa were seen at the end of the 2-year study and were accompanied by increased incidences of gingival squamous hyperplasia. In the pancreas at 53 weeks, the incidence of acinar cytoplasmic vacuolization was significantly increased in the highest dose group. At 2 years, increased incidences of acinar atrophy and acinar cytoplasmic vacuolization were seen in addition to pancreatic acinar neoplasms in dosed groups. In Groups 5 and 7, these incidences exceeded the historical vehicle control ranges. In the uterus at 2 years, there was a marginal increase in the incidence of squamous cell carcinoma in Group 5. Numerous nonneoplastic effects were seen in other organs at the interim time points including atrophy of the thymus and follicular cell hypertrophy of the thyroid gland. These responses were also affected by administration of the mixture of PCB 126 and PCB 153 at the end of the 2-year study and were accompanied by additional nonneoplastic responses in numerous organs including atrophy of the adrenal cortex and cortical hyperplasia, severity of nephropathy, and incidences of pigmentation of the kidney. Other nonneoplastic lesions that were treatment related were forestomach hyperplasia, hyperplasia of the nasal respiratory epithelium, metaplasia of the olfactory epithelium, and ectasia of the mandibular lymph node. Varying Ratio Mixture of PCB 126 and PCB 153: An effect of increasing the proportion of PCB 153 in the PCB mixture was seen in several tissues, most notably in the liver. Treatment-related nonneoplastic effects seen across the varying ratio groups were generally the same as those seen in the constant ratio groups. In general there was a positive effect of PCB 153 in the mixture on the incidences and severities of these lesions with higher incidences and higher severities being seen in Group 6, which had the highest proportion of PCB 153. (ABSTRACT TRUNCATED).</p>","PeriodicalId":19036,"journal":{"name":"National Toxicology Program technical report series","volume":" 530","pages":"1-258"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicology and carcinogenesis studies of a binary mixture of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) (Cas No. 57465-28-8) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) (CAS No. 35065-27-1) in female Harlan Sprague-Dawley rats (gavage studies).\",\"authors\":\"\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DIOXIN TOXIC EQUIVALENCY FACTOR EVALUATION OVERVIEW: Polyhalogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have the ability to bind to and activate the ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR). Structurally related compounds that bind to the AhR and exhibit biological actions similar to TCDD are commonly referred to as \\\"dioxin-like compounds\\\" (DLCs). Ambient human exposure to DLCs occurs through the ingestion of foods containing residues of DLCs that bio-concentrate through the food chain. Due to their lipophilicity and persistence, once internalized they accumulate in body tissues, mainly adipose, resulting in chronic lifetime human exposure. Since human exposure to DLCs always occurs as a complex mixture, the toxic equivalency factor (TEF) methodology has been developed as a mathematical tool to assess the health risk posed by complex mixtures of these compounds. The TEF methodology is a relative potency scheme that ranks the dioxin-like activity of a compound relative to TCDD, the most potent congener. This allows for the estimation of the potential dioxin-like activity of a mixture of chemicals, based on a common mechanism of action involving an initial binding of DLCs to the AhR. The toxic equivalency of DLCs was nominated for evaluation because of the widespread human exposure to DLCs and the lack of data on the adequacy of the TEF methodology for predicting relative potency for cancer risk. To address this, the National Toxicology Program conducted a series of 2-year bioassays in female Harlan Sprague-Dawley rats to evaluate the chronic toxicity and carcinogenicity of DLCs and structurally related polychlorinated biphenyls (PCBs) and mixtures of these compounds. 2-YEAR STUDY: The 2-year study of a binary mixture of PCB 126 and PCB 153 was designed to assess the carcinogenicity of a constant ratio mixture of PCB 126 and PCB 153. In addition, varying ratio mixture groups were used to assess the impact of increasing PCB 153 on the carcinogenicity of PCB 126. Dose groups were divided into two study arms (Figure 1). TCDD equivalent (TEQ) doses are based on the PCB 126 doses after adjustment for the PCB 126 TEF of 0.1. Groups of 81 (Groups 2, 3, 5, and 7) or 80 (Groups 4 and 6) female rats received a mixture of PCB 126 and PCB 153 in corn oil:acetone (99:1) by gavage 5 days per week for up to 105 weeks; a group of 81 female rats received the corn oil:acetone (99:1) vehicle only and served as the vehicle control (Group 1). Up to 10 rats per group were evaluated at 14, 31, and 53 weeks. Survival of all dosed groups was similar to that of the vehicle controls. The mean body weights of Groups 4 and 5 were generally less than those of the vehicle controls after week 25. The mean body weights of Group 6 were less after week 12, and those of Group 7 were less after week 8. Thyroid Hormone Concentrations: Alterations in serum thyroid hormone levels were evaluated at the 14-, 31-, and 53-week interim evaluations. In the constant ratio groups, serum total thyroxine (T(4)) and free T(4) generally showed a treatment-related decrease relative to controls. Serum total triiodothyronine (T(3)) exhibited a treatment-related increase at the 14-, 31-, and 53-week interim evaluations, but serum thyroid stimulating hormone (TSH) levels were increased at the 14-week time point only. In the varying ratio groups, the decrease in total and free T(4) was more pronounced in those groups dosed with the increasing proportion of PCB 153 at the 31- and 53-week time points. Hepatic Cell Proliferation Data: To evaluate hepatocyte replication, analysis of labeling of replicating hepatocytes with 5-bromo-2'-deoxyuridine was conducted at the 14-, 31-, and 53-week interim evaluations. At 31 and 53 weeks, a significant increase in the hepatocellular labeling index occurred in Group 7. In the varying ratio groups, the labeling index at the 53-week interim time point was significantly higher in Group 6, which had the highest proportion of PCB 153 compared to the other varying ratio groups. Cytochrome P450 Enzyme Activities: To evaluate the expression of known PCB 126-responsive genes, CYP1A1-associated 7-ethoxyresorufin-O-deethylase (EROD) and CYP1A2-associated acetanilide-4-hydroxylase (A4H) activities were evaluated at the 14-, 31-, and 53-week interim evaluations. In addition, PCB 153-inducible CYP2B-associated 7-pent-oxyresorufin-O-dealkylase (PROD) activity was analyzed. In the constant ratio Groups 2, 3, 5, and 7, hepatic and pulmonary EROD (CYP1A1) activities, hepatic A4H (CYP1A2) activities, and hepatic PROD (CYP2B) activities were significantly greater in all dosed groups compared to the vehicle controls at weeks 14, 31, and 53. In the varying ratio groups, hepatic EROD, A4H, and PROD activities at 14 weeks were higher in groups receiving a greater proportion of PCB 153 in the PCB mixture. At 31 and 53 weeks, hepatic CYP1A1 and CYP1A2 enzyme activities in Group 6 were generally lower than in Groups 4 and 5. Determinations of PCB 126 and PCB 153 Concentrations in Tissues: Concentrations of PCB 126 and PCB 153 were determined in fat, liver, lung, and blood at the 14-, 31-, and 53-week interim evaluations and at the end of the 2-year study (105 weeks). PCB 126 was not detectable in vehicle control animals, but increased with increasing dose of PCB 126 and duration of exposure; the highest concentrations were found in liver and fat, and lower levels were seen in lung and blood. Increasing the proportion of PCB 153 in the mixture relative to PCB 126 led to a general decrease in the amount of PCB 126 in liver and lung at the later time points, whereas in fat and blood, there was generally either no effect of PCB 153 on the disposition of PCB 126, or there was an increase in the amount of PCB 126 in the tissue. In vehicle control animals, PCB 153 was detectable in the fat at all time points, in the lung at all time points except 53 weeks, and in the liver and blood at 2 years. PCB 153 was measurable in all examined tissues of treated animals, with the highest concentrations found in fat at the end of the 2-year study in groups administered the highest doses of PCB 153. Pathology and Statistical Analyses -- Constant Ratio Mixture of PCB 126 and PCB 153: At 14, 31, and 53 weeks, the absolute and relative liver weights of all dosed groups were generally greater than those of the vehicle controls. Exposure to the PCB mixture led to significant toxicity in the liver. At 14 weeks, the incidences of several nonneoplastic liver lesions were increased compared to the vehicle controls including hepatocyte hypertrophy, pigmentation, multinucleated hepatocytes, and diffuse fatty change. The spectrum and severity of effects increased with dose and duration of exposure. At the end of the 2-year study, there were significantly increased incidences and severities of toxic hepatopathy characterized by hepatocyte hypertrophy, multinucleated hepatocytes, pigmentation, diffuse and focal fatty change, eosinophilic focus, nodular hyperplasia, cholangiofibrosis, oval cell hyperplasia, bile duct cysts, bile duct hyperplasia, necrosis, and portal fibrosis. Significantly increased incidences of hepatocellular adenoma, cholangiocarcinoma, and hepatocholangioma were observed in the study. In addition, two animals in the highest dose group had hepatocellular carcinoma. The incidences of these lesions generally exceeded the historical vehicle control ranges. At 2 years, a significantly increased incidence of cystic keratinizing epithelioma of the lung was observed in Group 7. In addition, single occurrences of squamous cell carcinoma were seen in the top two dose groups. Nonneoplastic effects whose incidences were increased in the lung included bronchiolar metaplasia of the alveolar epithelium and squamous metaplasia. Significantly increased incidences of squamous cell carcinoma (gingival) of the oral mucosa were seen at the end of the 2-year study and were accompanied by increased incidences of gingival squamous hyperplasia. In the pancreas at 53 weeks, the incidence of acinar cytoplasmic vacuolization was significantly increased in the highest dose group. At 2 years, increased incidences of acinar atrophy and acinar cytoplasmic vacuolization were seen in addition to pancreatic acinar neoplasms in dosed groups. In Groups 5 and 7, these incidences exceeded the historical vehicle control ranges. In the uterus at 2 years, there was a marginal increase in the incidence of squamous cell carcinoma in Group 5. Numerous nonneoplastic effects were seen in other organs at the interim time points including atrophy of the thymus and follicular cell hypertrophy of the thyroid gland. These responses were also affected by administration of the mixture of PCB 126 and PCB 153 at the end of the 2-year study and were accompanied by additional nonneoplastic responses in numerous organs including atrophy of the adrenal cortex and cortical hyperplasia, severity of nephropathy, and incidences of pigmentation of the kidney. Other nonneoplastic lesions that were treatment related were forestomach hyperplasia, hyperplasia of the nasal respiratory epithelium, metaplasia of the olfactory epithelium, and ectasia of the mandibular lymph node. Varying Ratio Mixture of PCB 126 and PCB 153: An effect of increasing the proportion of PCB 153 in the PCB mixture was seen in several tissues, most notably in the liver. Treatment-related nonneoplastic effects seen across the varying ratio groups were generally the same as those seen in the constant ratio groups. In general there was a positive effect of PCB 153 in the mixture on the incidences and severities of these lesions with higher incidences and higher severities being seen in Group 6, which had the highest proportion of PCB 153. (ABSTRACT TRUNCATED).</p>\",\"PeriodicalId\":19036,\"journal\":{\"name\":\"National Toxicology Program technical report series\",\"volume\":\" 530\",\"pages\":\"1-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Toxicology Program technical report series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Toxicology Program technical report series","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Toxicology and carcinogenesis studies of a binary mixture of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) (Cas No. 57465-28-8) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) (CAS No. 35065-27-1) in female Harlan Sprague-Dawley rats (gavage studies).
DIOXIN TOXIC EQUIVALENCY FACTOR EVALUATION OVERVIEW: Polyhalogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have the ability to bind to and activate the ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR). Structurally related compounds that bind to the AhR and exhibit biological actions similar to TCDD are commonly referred to as "dioxin-like compounds" (DLCs). Ambient human exposure to DLCs occurs through the ingestion of foods containing residues of DLCs that bio-concentrate through the food chain. Due to their lipophilicity and persistence, once internalized they accumulate in body tissues, mainly adipose, resulting in chronic lifetime human exposure. Since human exposure to DLCs always occurs as a complex mixture, the toxic equivalency factor (TEF) methodology has been developed as a mathematical tool to assess the health risk posed by complex mixtures of these compounds. The TEF methodology is a relative potency scheme that ranks the dioxin-like activity of a compound relative to TCDD, the most potent congener. This allows for the estimation of the potential dioxin-like activity of a mixture of chemicals, based on a common mechanism of action involving an initial binding of DLCs to the AhR. The toxic equivalency of DLCs was nominated for evaluation because of the widespread human exposure to DLCs and the lack of data on the adequacy of the TEF methodology for predicting relative potency for cancer risk. To address this, the National Toxicology Program conducted a series of 2-year bioassays in female Harlan Sprague-Dawley rats to evaluate the chronic toxicity and carcinogenicity of DLCs and structurally related polychlorinated biphenyls (PCBs) and mixtures of these compounds. 2-YEAR STUDY: The 2-year study of a binary mixture of PCB 126 and PCB 153 was designed to assess the carcinogenicity of a constant ratio mixture of PCB 126 and PCB 153. In addition, varying ratio mixture groups were used to assess the impact of increasing PCB 153 on the carcinogenicity of PCB 126. Dose groups were divided into two study arms (Figure 1). TCDD equivalent (TEQ) doses are based on the PCB 126 doses after adjustment for the PCB 126 TEF of 0.1. Groups of 81 (Groups 2, 3, 5, and 7) or 80 (Groups 4 and 6) female rats received a mixture of PCB 126 and PCB 153 in corn oil:acetone (99:1) by gavage 5 days per week for up to 105 weeks; a group of 81 female rats received the corn oil:acetone (99:1) vehicle only and served as the vehicle control (Group 1). Up to 10 rats per group were evaluated at 14, 31, and 53 weeks. Survival of all dosed groups was similar to that of the vehicle controls. The mean body weights of Groups 4 and 5 were generally less than those of the vehicle controls after week 25. The mean body weights of Group 6 were less after week 12, and those of Group 7 were less after week 8. Thyroid Hormone Concentrations: Alterations in serum thyroid hormone levels were evaluated at the 14-, 31-, and 53-week interim evaluations. In the constant ratio groups, serum total thyroxine (T(4)) and free T(4) generally showed a treatment-related decrease relative to controls. Serum total triiodothyronine (T(3)) exhibited a treatment-related increase at the 14-, 31-, and 53-week interim evaluations, but serum thyroid stimulating hormone (TSH) levels were increased at the 14-week time point only. In the varying ratio groups, the decrease in total and free T(4) was more pronounced in those groups dosed with the increasing proportion of PCB 153 at the 31- and 53-week time points. Hepatic Cell Proliferation Data: To evaluate hepatocyte replication, analysis of labeling of replicating hepatocytes with 5-bromo-2'-deoxyuridine was conducted at the 14-, 31-, and 53-week interim evaluations. At 31 and 53 weeks, a significant increase in the hepatocellular labeling index occurred in Group 7. In the varying ratio groups, the labeling index at the 53-week interim time point was significantly higher in Group 6, which had the highest proportion of PCB 153 compared to the other varying ratio groups. Cytochrome P450 Enzyme Activities: To evaluate the expression of known PCB 126-responsive genes, CYP1A1-associated 7-ethoxyresorufin-O-deethylase (EROD) and CYP1A2-associated acetanilide-4-hydroxylase (A4H) activities were evaluated at the 14-, 31-, and 53-week interim evaluations. In addition, PCB 153-inducible CYP2B-associated 7-pent-oxyresorufin-O-dealkylase (PROD) activity was analyzed. In the constant ratio Groups 2, 3, 5, and 7, hepatic and pulmonary EROD (CYP1A1) activities, hepatic A4H (CYP1A2) activities, and hepatic PROD (CYP2B) activities were significantly greater in all dosed groups compared to the vehicle controls at weeks 14, 31, and 53. In the varying ratio groups, hepatic EROD, A4H, and PROD activities at 14 weeks were higher in groups receiving a greater proportion of PCB 153 in the PCB mixture. At 31 and 53 weeks, hepatic CYP1A1 and CYP1A2 enzyme activities in Group 6 were generally lower than in Groups 4 and 5. Determinations of PCB 126 and PCB 153 Concentrations in Tissues: Concentrations of PCB 126 and PCB 153 were determined in fat, liver, lung, and blood at the 14-, 31-, and 53-week interim evaluations and at the end of the 2-year study (105 weeks). PCB 126 was not detectable in vehicle control animals, but increased with increasing dose of PCB 126 and duration of exposure; the highest concentrations were found in liver and fat, and lower levels were seen in lung and blood. Increasing the proportion of PCB 153 in the mixture relative to PCB 126 led to a general decrease in the amount of PCB 126 in liver and lung at the later time points, whereas in fat and blood, there was generally either no effect of PCB 153 on the disposition of PCB 126, or there was an increase in the amount of PCB 126 in the tissue. In vehicle control animals, PCB 153 was detectable in the fat at all time points, in the lung at all time points except 53 weeks, and in the liver and blood at 2 years. PCB 153 was measurable in all examined tissues of treated animals, with the highest concentrations found in fat at the end of the 2-year study in groups administered the highest doses of PCB 153. Pathology and Statistical Analyses -- Constant Ratio Mixture of PCB 126 and PCB 153: At 14, 31, and 53 weeks, the absolute and relative liver weights of all dosed groups were generally greater than those of the vehicle controls. Exposure to the PCB mixture led to significant toxicity in the liver. At 14 weeks, the incidences of several nonneoplastic liver lesions were increased compared to the vehicle controls including hepatocyte hypertrophy, pigmentation, multinucleated hepatocytes, and diffuse fatty change. The spectrum and severity of effects increased with dose and duration of exposure. At the end of the 2-year study, there were significantly increased incidences and severities of toxic hepatopathy characterized by hepatocyte hypertrophy, multinucleated hepatocytes, pigmentation, diffuse and focal fatty change, eosinophilic focus, nodular hyperplasia, cholangiofibrosis, oval cell hyperplasia, bile duct cysts, bile duct hyperplasia, necrosis, and portal fibrosis. Significantly increased incidences of hepatocellular adenoma, cholangiocarcinoma, and hepatocholangioma were observed in the study. In addition, two animals in the highest dose group had hepatocellular carcinoma. The incidences of these lesions generally exceeded the historical vehicle control ranges. At 2 years, a significantly increased incidence of cystic keratinizing epithelioma of the lung was observed in Group 7. In addition, single occurrences of squamous cell carcinoma were seen in the top two dose groups. Nonneoplastic effects whose incidences were increased in the lung included bronchiolar metaplasia of the alveolar epithelium and squamous metaplasia. Significantly increased incidences of squamous cell carcinoma (gingival) of the oral mucosa were seen at the end of the 2-year study and were accompanied by increased incidences of gingival squamous hyperplasia. In the pancreas at 53 weeks, the incidence of acinar cytoplasmic vacuolization was significantly increased in the highest dose group. At 2 years, increased incidences of acinar atrophy and acinar cytoplasmic vacuolization were seen in addition to pancreatic acinar neoplasms in dosed groups. In Groups 5 and 7, these incidences exceeded the historical vehicle control ranges. In the uterus at 2 years, there was a marginal increase in the incidence of squamous cell carcinoma in Group 5. Numerous nonneoplastic effects were seen in other organs at the interim time points including atrophy of the thymus and follicular cell hypertrophy of the thyroid gland. These responses were also affected by administration of the mixture of PCB 126 and PCB 153 at the end of the 2-year study and were accompanied by additional nonneoplastic responses in numerous organs including atrophy of the adrenal cortex and cortical hyperplasia, severity of nephropathy, and incidences of pigmentation of the kidney. Other nonneoplastic lesions that were treatment related were forestomach hyperplasia, hyperplasia of the nasal respiratory epithelium, metaplasia of the olfactory epithelium, and ectasia of the mandibular lymph node. Varying Ratio Mixture of PCB 126 and PCB 153: An effect of increasing the proportion of PCB 153 in the PCB mixture was seen in several tissues, most notably in the liver. Treatment-related nonneoplastic effects seen across the varying ratio groups were generally the same as those seen in the constant ratio groups. In general there was a positive effect of PCB 153 in the mixture on the incidences and severities of these lesions with higher incidences and higher severities being seen in Group 6, which had the highest proportion of PCB 153. (ABSTRACT TRUNCATED).