对分子生物学更多理论的请求。

O Wolkenhauer, M Mesarović, P Wellstead
{"title":"对分子生物学更多理论的请求。","authors":"O Wolkenhauer,&nbsp;M Mesarović,&nbsp;P Wellstead","doi":"10.1007/978-3-540-31339-7_6","DOIUrl":null,"url":null,"abstract":"<p><p>The integrationist principles of systems theory have proven hugely successful in the physical sciences and engineering. It is an underlying assumption made in the systems approach to biology that they can also be used to understand biological phenomena at the level of an entire organism or organ. Within this holistic vision, the vast majority of systems biology research projects investigate phenomena at the level of the cell, with the belief that unifying principles established at the most basic level can establish a framework within which we may understand phenomena at higher levels of organization. In this spirit, and to use a celestial analogy, if a disease--effecting an organ or entire body--is our universe of discourse, then the cell is the star we gaze at. In building an understanding of disease and the effect of drugs, systems biology makes an implicit assumption about direct causal entailment between cell function and physiology. A skeptic might argue that this is about the same as trying to predict the world economy from observations made at a local supermarket. However, assuming for the moment that the money and hope we are investing in molecular biology, genomics, and systems biology is justified, how should this amazing intellectual achievement be possible? In this chapter we argue that an essential tool to progress is a systems theory that allows biological objects and their operational characteristics to be captured in a succinct yet general form. Armed with this conceptual framework, we construct mathematical representations of standard cellular and intercellular functions which can be integrated to describe more general processes of cell complexes, and potentially entire organs.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 61","pages":"117-37"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A plea for more theory in molecular biology.\",\"authors\":\"O Wolkenhauer,&nbsp;M Mesarović,&nbsp;P Wellstead\",\"doi\":\"10.1007/978-3-540-31339-7_6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integrationist principles of systems theory have proven hugely successful in the physical sciences and engineering. It is an underlying assumption made in the systems approach to biology that they can also be used to understand biological phenomena at the level of an entire organism or organ. Within this holistic vision, the vast majority of systems biology research projects investigate phenomena at the level of the cell, with the belief that unifying principles established at the most basic level can establish a framework within which we may understand phenomena at higher levels of organization. In this spirit, and to use a celestial analogy, if a disease--effecting an organ or entire body--is our universe of discourse, then the cell is the star we gaze at. In building an understanding of disease and the effect of drugs, systems biology makes an implicit assumption about direct causal entailment between cell function and physiology. A skeptic might argue that this is about the same as trying to predict the world economy from observations made at a local supermarket. However, assuming for the moment that the money and hope we are investing in molecular biology, genomics, and systems biology is justified, how should this amazing intellectual achievement be possible? In this chapter we argue that an essential tool to progress is a systems theory that allows biological objects and their operational characteristics to be captured in a succinct yet general form. Armed with this conceptual framework, we construct mathematical representations of standard cellular and intercellular functions which can be integrated to describe more general processes of cell complexes, and potentially entire organs.</p>\",\"PeriodicalId\":80277,\"journal\":{\"name\":\"Ernst Schering Research Foundation workshop\",\"volume\":\" 61\",\"pages\":\"117-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ernst Schering Research Foundation workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-540-31339-7_6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Research Foundation workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-540-31339-7_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

系统理论的整合原理在物理科学和工程中已经被证明是非常成功的。这是生物学系统方法的一个基本假设,即它们也可以用于理解整个生物体或器官水平上的生物现象。在这种整体视野下,绝大多数系统生物学研究项目都是在细胞水平上研究现象,相信在最基本的水平上建立的统一原则可以建立一个框架,在这个框架内我们可以理解更高层次的组织现象。在这种精神下,用一个天体的比喻,如果一种疾病——影响一个器官或整个身体——是我们的话语世界,那么细胞就是我们凝视的星星。在建立对疾病和药物作用的理解时,系统生物学对细胞功能和生理之间的直接因果关系做出了一个隐含的假设。持怀疑态度的人可能会说,这就像试图通过在当地超市的观察来预测世界经济一样。然而,假设我们目前在分子生物学、基因组学和系统生物学上投入的资金和希望是合理的,那么这种惊人的智力成就是如何实现的呢?在本章中,我们认为进步的一个重要工具是系统理论,它允许以简洁而一般的形式捕获生物对象及其操作特征。有了这个概念框架,我们构建了标准细胞和细胞间功能的数学表示,这些功能可以集成到描述细胞复合物和潜在的整个器官的更一般过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A plea for more theory in molecular biology.

The integrationist principles of systems theory have proven hugely successful in the physical sciences and engineering. It is an underlying assumption made in the systems approach to biology that they can also be used to understand biological phenomena at the level of an entire organism or organ. Within this holistic vision, the vast majority of systems biology research projects investigate phenomena at the level of the cell, with the belief that unifying principles established at the most basic level can establish a framework within which we may understand phenomena at higher levels of organization. In this spirit, and to use a celestial analogy, if a disease--effecting an organ or entire body--is our universe of discourse, then the cell is the star we gaze at. In building an understanding of disease and the effect of drugs, systems biology makes an implicit assumption about direct causal entailment between cell function and physiology. A skeptic might argue that this is about the same as trying to predict the world economy from observations made at a local supermarket. However, assuming for the moment that the money and hope we are investing in molecular biology, genomics, and systems biology is justified, how should this amazing intellectual achievement be possible? In this chapter we argue that an essential tool to progress is a systems theory that allows biological objects and their operational characteristics to be captured in a succinct yet general form. Armed with this conceptual framework, we construct mathematical representations of standard cellular and intercellular functions which can be integrated to describe more general processes of cell complexes, and potentially entire organs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiences with dose finding in patients in early drug development: the use of biomarkers in early decision making. Genotype and phenotype relationship in drug metabolism. Clinical trials in elderly patients. Dose finding in pediatric patients. Integration of pediatric aspects into the general drug development process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1