将因果框架应用于系统建模。

C A Lieu, K O Elliston
{"title":"将因果框架应用于系统建模。","authors":"C A Lieu,&nbsp;K O Elliston","doi":"10.1007/978-3-540-31339-7_7","DOIUrl":null,"url":null,"abstract":"<p><p>The emerging field of systems biology represents a revolution in our ability to understand biology. Perhaps for the first time in history we have the capacity to pursue biological understanding using a computer-aided integrative approach in conjunction with classical reductionist approaches. Technology has given us not only the ability to identify and measure the individual molecules of life and the way they change, but also the power to study these molecules and their changes in the context of a big picture. It is through the creation of a computer-aided framework for human understanding that we can begin to comprehend how these collections of molecules act as integrated biological systems, and to utilize this knowledge to rationally engineer the future of science and medicine.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 61","pages":"139-52"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-540-31339-7_7","citationCount":"6","resultStr":"{\"title\":\"Applying a causal framework to system modeling.\",\"authors\":\"C A Lieu,&nbsp;K O Elliston\",\"doi\":\"10.1007/978-3-540-31339-7_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emerging field of systems biology represents a revolution in our ability to understand biology. Perhaps for the first time in history we have the capacity to pursue biological understanding using a computer-aided integrative approach in conjunction with classical reductionist approaches. Technology has given us not only the ability to identify and measure the individual molecules of life and the way they change, but also the power to study these molecules and their changes in the context of a big picture. It is through the creation of a computer-aided framework for human understanding that we can begin to comprehend how these collections of molecules act as integrated biological systems, and to utilize this knowledge to rationally engineer the future of science and medicine.</p>\",\"PeriodicalId\":80277,\"journal\":{\"name\":\"Ernst Schering Research Foundation workshop\",\"volume\":\" 61\",\"pages\":\"139-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-540-31339-7_7\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ernst Schering Research Foundation workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-540-31339-7_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Research Foundation workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-540-31339-7_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

系统生物学这一新兴领域代表了我们理解生物学能力的一场革命。也许在历史上,我们第一次有能力利用计算机辅助的综合方法与经典的还原论方法相结合来追求生物学的理解。科技不仅给了我们识别和测量生命个体分子及其变化方式的能力,也给了我们在大背景下研究这些分子及其变化的能力。正是通过为人类理解创造一个计算机辅助框架,我们才能开始理解这些分子的集合如何作为一个完整的生物系统,并利用这些知识来合理地设计科学和医学的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying a causal framework to system modeling.

The emerging field of systems biology represents a revolution in our ability to understand biology. Perhaps for the first time in history we have the capacity to pursue biological understanding using a computer-aided integrative approach in conjunction with classical reductionist approaches. Technology has given us not only the ability to identify and measure the individual molecules of life and the way they change, but also the power to study these molecules and their changes in the context of a big picture. It is through the creation of a computer-aided framework for human understanding that we can begin to comprehend how these collections of molecules act as integrated biological systems, and to utilize this knowledge to rationally engineer the future of science and medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiences with dose finding in patients in early drug development: the use of biomarkers in early decision making. Genotype and phenotype relationship in drug metabolism. Clinical trials in elderly patients. Dose finding in pediatric patients. Integration of pediatric aspects into the general drug development process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1