RNAi在靶标验证中的应用。

A Kourtidis, C Eifert, D S Conklin
{"title":"RNAi在靶标验证中的应用。","authors":"A Kourtidis,&nbsp;C Eifert,&nbsp;D S Conklin","doi":"10.1007/978-3-540-31339-7_1","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of systems biology is certain to transform the identification and validation of therapeutic targets in modern drug discovery. A relatively recent systems biology approach is functional genomics, which identifies the molecular mechanisms responsible for a specific phenotype by interrogating the activity of all of an organism's genes. Initially undertaken in model organisms such as Caenorhabditis elegans, Saccharomyces cerevisiae, and Drosophila melanogaster, functional genomics has now moved into the realm of mammalian cells both in vitro and in vivo due to the development of RNA interference. RNA interference is a conserved biological process that has evolved to specifically and efficiently silence genes. Genome-wide screens using RNA interference have proven powerful in elucidating components of functionally related pathways and have therefore become integral for the development of new and improved therapeutic targets. This article provides an overview of many of the systems biology approaches taken, using RNA interference, in order to demonstrate how it may be used today for drug discovery and tomorrow as a targeted therapy.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 61","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-540-31339-7_1","citationCount":"12","resultStr":"{\"title\":\"RNAi applications in target validation.\",\"authors\":\"A Kourtidis,&nbsp;C Eifert,&nbsp;D S Conklin\",\"doi\":\"10.1007/978-3-540-31339-7_1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of systems biology is certain to transform the identification and validation of therapeutic targets in modern drug discovery. A relatively recent systems biology approach is functional genomics, which identifies the molecular mechanisms responsible for a specific phenotype by interrogating the activity of all of an organism's genes. Initially undertaken in model organisms such as Caenorhabditis elegans, Saccharomyces cerevisiae, and Drosophila melanogaster, functional genomics has now moved into the realm of mammalian cells both in vitro and in vivo due to the development of RNA interference. RNA interference is a conserved biological process that has evolved to specifically and efficiently silence genes. Genome-wide screens using RNA interference have proven powerful in elucidating components of functionally related pathways and have therefore become integral for the development of new and improved therapeutic targets. This article provides an overview of many of the systems biology approaches taken, using RNA interference, in order to demonstrate how it may be used today for drug discovery and tomorrow as a targeted therapy.</p>\",\"PeriodicalId\":80277,\"journal\":{\"name\":\"Ernst Schering Research Foundation workshop\",\"volume\":\" 61\",\"pages\":\"1-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-540-31339-7_1\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ernst Schering Research Foundation workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-540-31339-7_1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Research Foundation workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-540-31339-7_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

系统生物学的出现必将改变现代药物发现中治疗靶点的识别和验证。一种相对较新的系统生物学方法是功能基因组学,它通过询问生物体所有基因的活性来确定负责特定表型的分子机制。功能基因组学最初是在秀丽隐杆线虫、酿酒酵母菌和黑腹果蝇等模式生物中进行的,现在由于RNA干扰的发展,功能基因组学已经进入了哺乳动物细胞的体外和体内领域。RNA干扰是一个保守的生物过程,它已经进化到特异性和有效地沉默基因。使用RNA干扰的全基因组筛选在阐明功能相关途径的组成部分方面已被证明是强大的,因此已成为开发新的和改进的治疗靶点的组成部分。本文概述了许多使用RNA干扰的系统生物学方法,以展示如何将其用于今天的药物发现和明天的靶向治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNAi applications in target validation.

The emergence of systems biology is certain to transform the identification and validation of therapeutic targets in modern drug discovery. A relatively recent systems biology approach is functional genomics, which identifies the molecular mechanisms responsible for a specific phenotype by interrogating the activity of all of an organism's genes. Initially undertaken in model organisms such as Caenorhabditis elegans, Saccharomyces cerevisiae, and Drosophila melanogaster, functional genomics has now moved into the realm of mammalian cells both in vitro and in vivo due to the development of RNA interference. RNA interference is a conserved biological process that has evolved to specifically and efficiently silence genes. Genome-wide screens using RNA interference have proven powerful in elucidating components of functionally related pathways and have therefore become integral for the development of new and improved therapeutic targets. This article provides an overview of many of the systems biology approaches taken, using RNA interference, in order to demonstrate how it may be used today for drug discovery and tomorrow as a targeted therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiences with dose finding in patients in early drug development: the use of biomarkers in early decision making. Genotype and phenotype relationship in drug metabolism. Clinical trials in elderly patients. Dose finding in pediatric patients. Integration of pediatric aspects into the general drug development process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1