{"title":"金属催化CH活化/功能化:基本原理","authors":"Fares Roudesly, Julie Oble, Giovanni Poli","doi":"10.1016/j.molcata.2016.06.020","DOIUrl":null,"url":null,"abstract":"<div><p>An isolated C<img>H bond in a molecule has a very low reactivity owing to the large kinetic barrier associated to the C<img>H bond cleavage and the apolar nature of this bond. For this reason, the selective reactivity of such a non-functional group is under active study since several decades and is still regarded as the Holy Grail in chemistry. Metal-catalyzed C<img>H activation/functionalization chemistry allows the step-economical and original construction of C<img>C as well as C<img>O and C<img>N bonds starting from hydrocarbons (or hydrocarbon fragments) without the need of prior non catalytic oxidation steps. Furthermore, it can be of utmost importance in the domain of multistep syntheses, and also in transformations of societal significance such as the conversion of methane into methanol. This tutorial review addresses to students and researchers who would like to become acquainted with this fascinating topic. After a brief historical introduction, the main mechanistic fundaments of metal-catalyzed C<img>H activation are exposed. Then, a selection of seminal advances and conceptual breakthroughs are presented.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 275-296"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.06.020","citationCount":"166","resultStr":"{\"title\":\"Metal-catalyzed CH activation/functionalization: The fundamentals\",\"authors\":\"Fares Roudesly, Julie Oble, Giovanni Poli\",\"doi\":\"10.1016/j.molcata.2016.06.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An isolated C<img>H bond in a molecule has a very low reactivity owing to the large kinetic barrier associated to the C<img>H bond cleavage and the apolar nature of this bond. For this reason, the selective reactivity of such a non-functional group is under active study since several decades and is still regarded as the Holy Grail in chemistry. Metal-catalyzed C<img>H activation/functionalization chemistry allows the step-economical and original construction of C<img>C as well as C<img>O and C<img>N bonds starting from hydrocarbons (or hydrocarbon fragments) without the need of prior non catalytic oxidation steps. Furthermore, it can be of utmost importance in the domain of multistep syntheses, and also in transformations of societal significance such as the conversion of methane into methanol. This tutorial review addresses to students and researchers who would like to become acquainted with this fascinating topic. After a brief historical introduction, the main mechanistic fundaments of metal-catalyzed C<img>H activation are exposed. Then, a selection of seminal advances and conceptual breakthroughs are presented.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 275-296\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.06.020\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381116916302424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916302424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metal-catalyzed CH activation/functionalization: The fundamentals
An isolated CH bond in a molecule has a very low reactivity owing to the large kinetic barrier associated to the CH bond cleavage and the apolar nature of this bond. For this reason, the selective reactivity of such a non-functional group is under active study since several decades and is still regarded as the Holy Grail in chemistry. Metal-catalyzed CH activation/functionalization chemistry allows the step-economical and original construction of CC as well as CO and CN bonds starting from hydrocarbons (or hydrocarbon fragments) without the need of prior non catalytic oxidation steps. Furthermore, it can be of utmost importance in the domain of multistep syntheses, and also in transformations of societal significance such as the conversion of methane into methanol. This tutorial review addresses to students and researchers who would like to become acquainted with this fascinating topic. After a brief historical introduction, the main mechanistic fundaments of metal-catalyzed CH activation are exposed. Then, a selection of seminal advances and conceptual breakthroughs are presented.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.