拉丁美洲历史遗迹上的蓝藻多样性和生态学。

Benjamín Otto Ortega-Morales
{"title":"拉丁美洲历史遗迹上的蓝藻多样性和生态学。","authors":"Benjamín Otto Ortega-Morales","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacterial biofilms are complex communities of microorganisms that cause damaging activity on historic monuments. A combined molecular approach shows that cyanobacteria belonging to the order Pleurocapsales are the main colonizers at the Mayan site of Uxmal, Mexico, confirming previous microscopic and culture-based reports. An important, previously unrecognized non-cyanobacterial community comprising Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes has also been found in Uxmal. Cyanobacterial communities in Palenque were composed of over 10 species, mainly coccoid forms. A novel PCR method designed to directly amplify DNA from uncultured cyanobacterial cells on historic buildings in Brazil indicated that the identified cyanobacteria sequenced corresponded to their appropriate morphological groups (as defined by both the bacterial and botanical codes). However, their homologies with deposited sequences were, in general, low. Terrestrial cyanobacteria from stone surfaces in Brazil, again mainly coccoid, formed a distinct population that differed from the better-studied aquatic members. Overall, results here show demonstrate that coccoid cyanobacteria are the main colonizers on Latin American monuments under tropical and subtropical conditions and the assessment of their potential deteriogenic activity requires the further development of rapid molecular techniques. Polyphasic studies are essential to increase our knowledge of the diversity of terrestrial biofilms and of global microbial diversity.</p>","PeriodicalId":21464,"journal":{"name":"Revista latinoamericana de microbiologia","volume":"48 2","pages":"188-95"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyanobacterial diversity and ecology on historic monuments in Latin America.\",\"authors\":\"Benjamín Otto Ortega-Morales\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyanobacterial biofilms are complex communities of microorganisms that cause damaging activity on historic monuments. A combined molecular approach shows that cyanobacteria belonging to the order Pleurocapsales are the main colonizers at the Mayan site of Uxmal, Mexico, confirming previous microscopic and culture-based reports. An important, previously unrecognized non-cyanobacterial community comprising Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes has also been found in Uxmal. Cyanobacterial communities in Palenque were composed of over 10 species, mainly coccoid forms. A novel PCR method designed to directly amplify DNA from uncultured cyanobacterial cells on historic buildings in Brazil indicated that the identified cyanobacteria sequenced corresponded to their appropriate morphological groups (as defined by both the bacterial and botanical codes). However, their homologies with deposited sequences were, in general, low. Terrestrial cyanobacteria from stone surfaces in Brazil, again mainly coccoid, formed a distinct population that differed from the better-studied aquatic members. Overall, results here show demonstrate that coccoid cyanobacteria are the main colonizers on Latin American monuments under tropical and subtropical conditions and the assessment of their potential deteriogenic activity requires the further development of rapid molecular techniques. Polyphasic studies are essential to increase our knowledge of the diversity of terrestrial biofilms and of global microbial diversity.</p>\",\"PeriodicalId\":21464,\"journal\":{\"name\":\"Revista latinoamericana de microbiologia\",\"volume\":\"48 2\",\"pages\":\"188-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista latinoamericana de microbiologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista latinoamericana de microbiologia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蓝藻生物膜是复杂的微生物群落,对历史遗迹造成破坏。结合分子方法表明,属于胸膜菌目的蓝藻是墨西哥乌斯马尔玛雅遗址的主要殖民者,证实了先前的显微镜和培养报告。在Uxmal中还发现了一个重要的、以前未被认识的非蓝藻菌群落,包括变形菌门、厚壁菌门、放线菌门和拟杆菌门。帕伦克的蓝藻群落由10多种组成,主要是球藻形式。一种新的PCR方法旨在直接扩增巴西历史建筑上未培养的蓝藻细胞的DNA,结果表明,所鉴定的蓝藻序列符合其适当的形态群(由细菌和植物密码定义)。然而,它们与沉积序列的同源性一般较低。来自巴西石头表面的陆生蓝藻,同样主要是球藻,形成了一个不同于研究得更好的水生成员的独特种群。总体而言,本研究结果表明,球藻蓝藻是热带和亚热带条件下拉丁美洲遗迹的主要定殖菌,对其潜在的营养活性的评估需要进一步发展快速分子技术。多相研究对于提高我们对陆地生物膜多样性和全球微生物多样性的认识至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyanobacterial diversity and ecology on historic monuments in Latin America.

Cyanobacterial biofilms are complex communities of microorganisms that cause damaging activity on historic monuments. A combined molecular approach shows that cyanobacteria belonging to the order Pleurocapsales are the main colonizers at the Mayan site of Uxmal, Mexico, confirming previous microscopic and culture-based reports. An important, previously unrecognized non-cyanobacterial community comprising Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes has also been found in Uxmal. Cyanobacterial communities in Palenque were composed of over 10 species, mainly coccoid forms. A novel PCR method designed to directly amplify DNA from uncultured cyanobacterial cells on historic buildings in Brazil indicated that the identified cyanobacteria sequenced corresponded to their appropriate morphological groups (as defined by both the bacterial and botanical codes). However, their homologies with deposited sequences were, in general, low. Terrestrial cyanobacteria from stone surfaces in Brazil, again mainly coccoid, formed a distinct population that differed from the better-studied aquatic members. Overall, results here show demonstrate that coccoid cyanobacteria are the main colonizers on Latin American monuments under tropical and subtropical conditions and the assessment of their potential deteriogenic activity requires the further development of rapid molecular techniques. Polyphasic studies are essential to increase our knowledge of the diversity of terrestrial biofilms and of global microbial diversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pathogenic and opportunistic gram-negative bacteria in soil, leachate and air in San Nicolás landfill at Aguascalientes, Mexico. Gender as a factor of susceptibility to infection in experimental hydatidosis. PCR amplification of triosephosphate isomerase gene of Giardia lamblia in formalin-fixed feces. Preliminary studies on the microbiological characterization of lactic acid bacteria in suero costeño, a Colombian traditional fermented milk product. Confirmation of presumptive Salmonella colonies contaminated with Proteus swarming using the polymerase chain reaction (PCR) method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1