Dipanwita Dutta, S Saravana Devi, K Krishnamurthi, Koel Kumar, Priyanka Vyas, P L Muthal, P Naoghare, T Chakrabarti
{"title":"麝香叶提取物对人淋巴细胞抗基因毒物的调节作用。","authors":"Dipanwita Dutta, S Saravana Devi, K Krishnamurthi, Koel Kumar, Priyanka Vyas, P L Muthal, P Naoghare, T Chakrabarti","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To study the modulatory effect of distillate of Ocimum sanctum (traditionally known as Tulsi) leaf extract (DTLE) on genotoxicants.</p><p><strong>Methods: </strong>In the present investigation, we studied the antigenotoxic and anticlastogenic effect of distillate of Tulsi leaf extract on (i) human polymorphonuclear leukocytes by evaluating the DNA strand break without metabolic activation against mitomycin C (MMC) and hexavalent chromium (Cr+6) and (ii) human peripheral lymphocytes (in vitro) with or without metabolic activation against mitomycin C (MMC), hexavalent chromium (Cr+6) and B[a]P by evaluating chromosomal aberration (CA) and micronucleus assay (MN). Three different doses of DTLE, 50 microL/mL, 100 microL/mL, and 200 microL/mL were selected on the basis of cytotoxicity assay and used for studying DNA strand break, chromosomal aberration and micronucleus emergence. The following positive controls were used for inducing genotoxicity and clastogenicity: MMC (0.29 micromol/L) for DNA strand break, chromosomal aberration and 0.51 micromol/L for micronucleus assay; Potassium dichromate (Cr+6) 600 micromol/L for DNA strand break and 5 micromol/L for chromosomal aberration and micronucleus assay; Benzo[a]pyrene (30 micromol/L) for chromosomal aberration and 40 micromol/L for micronucleus assay. The active ingredients present in the distillate of Tulsi leaf extract were identified by HPLC and LC-MS.</p><p><strong>Results: </strong>Mitomycin C (MMC) and hexavalent chromium (Cr+6) induced statistically significant DNA strand break of respectively 69% and 71% (P<0.001) as revealed by fluorometric analysis of DNA unwinding. Furthermore, the damage could be protected with DTLE (50 microL/mL, 100 microL/mL, and 200 microL/mL) on simultaneous treatment. Chromosomal aberration and micronucleus formation induced by MMC, Cr+6 and B[a]P were significantly protected (P<0.001) by DTLE with and without metabolic activation.</p><p><strong>Conclusion: </strong>Distillate of Tulsi leaf extract possesses antioxidants contributed mainly by eugenol, luteolin and apigenin as identified by LC-MS. These active ingredients may have the protective effect against genotoxicants.</p>","PeriodicalId":9108,"journal":{"name":"Biomedical and environmental sciences : BES","volume":"20 3","pages":"226-34"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulatory effect of distillate of Ocimum sanctum leaf extract (Tulsi) on human lymphocytes against genotoxicants.\",\"authors\":\"Dipanwita Dutta, S Saravana Devi, K Krishnamurthi, Koel Kumar, Priyanka Vyas, P L Muthal, P Naoghare, T Chakrabarti\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To study the modulatory effect of distillate of Ocimum sanctum (traditionally known as Tulsi) leaf extract (DTLE) on genotoxicants.</p><p><strong>Methods: </strong>In the present investigation, we studied the antigenotoxic and anticlastogenic effect of distillate of Tulsi leaf extract on (i) human polymorphonuclear leukocytes by evaluating the DNA strand break without metabolic activation against mitomycin C (MMC) and hexavalent chromium (Cr+6) and (ii) human peripheral lymphocytes (in vitro) with or without metabolic activation against mitomycin C (MMC), hexavalent chromium (Cr+6) and B[a]P by evaluating chromosomal aberration (CA) and micronucleus assay (MN). Three different doses of DTLE, 50 microL/mL, 100 microL/mL, and 200 microL/mL were selected on the basis of cytotoxicity assay and used for studying DNA strand break, chromosomal aberration and micronucleus emergence. The following positive controls were used for inducing genotoxicity and clastogenicity: MMC (0.29 micromol/L) for DNA strand break, chromosomal aberration and 0.51 micromol/L for micronucleus assay; Potassium dichromate (Cr+6) 600 micromol/L for DNA strand break and 5 micromol/L for chromosomal aberration and micronucleus assay; Benzo[a]pyrene (30 micromol/L) for chromosomal aberration and 40 micromol/L for micronucleus assay. The active ingredients present in the distillate of Tulsi leaf extract were identified by HPLC and LC-MS.</p><p><strong>Results: </strong>Mitomycin C (MMC) and hexavalent chromium (Cr+6) induced statistically significant DNA strand break of respectively 69% and 71% (P<0.001) as revealed by fluorometric analysis of DNA unwinding. Furthermore, the damage could be protected with DTLE (50 microL/mL, 100 microL/mL, and 200 microL/mL) on simultaneous treatment. Chromosomal aberration and micronucleus formation induced by MMC, Cr+6 and B[a]P were significantly protected (P<0.001) by DTLE with and without metabolic activation.</p><p><strong>Conclusion: </strong>Distillate of Tulsi leaf extract possesses antioxidants contributed mainly by eugenol, luteolin and apigenin as identified by LC-MS. These active ingredients may have the protective effect against genotoxicants.</p>\",\"PeriodicalId\":9108,\"journal\":{\"name\":\"Biomedical and environmental sciences : BES\",\"volume\":\"20 3\",\"pages\":\"226-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical and environmental sciences : BES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and environmental sciences : BES","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulatory effect of distillate of Ocimum sanctum leaf extract (Tulsi) on human lymphocytes against genotoxicants.
Objective: To study the modulatory effect of distillate of Ocimum sanctum (traditionally known as Tulsi) leaf extract (DTLE) on genotoxicants.
Methods: In the present investigation, we studied the antigenotoxic and anticlastogenic effect of distillate of Tulsi leaf extract on (i) human polymorphonuclear leukocytes by evaluating the DNA strand break without metabolic activation against mitomycin C (MMC) and hexavalent chromium (Cr+6) and (ii) human peripheral lymphocytes (in vitro) with or without metabolic activation against mitomycin C (MMC), hexavalent chromium (Cr+6) and B[a]P by evaluating chromosomal aberration (CA) and micronucleus assay (MN). Three different doses of DTLE, 50 microL/mL, 100 microL/mL, and 200 microL/mL were selected on the basis of cytotoxicity assay and used for studying DNA strand break, chromosomal aberration and micronucleus emergence. The following positive controls were used for inducing genotoxicity and clastogenicity: MMC (0.29 micromol/L) for DNA strand break, chromosomal aberration and 0.51 micromol/L for micronucleus assay; Potassium dichromate (Cr+6) 600 micromol/L for DNA strand break and 5 micromol/L for chromosomal aberration and micronucleus assay; Benzo[a]pyrene (30 micromol/L) for chromosomal aberration and 40 micromol/L for micronucleus assay. The active ingredients present in the distillate of Tulsi leaf extract were identified by HPLC and LC-MS.
Results: Mitomycin C (MMC) and hexavalent chromium (Cr+6) induced statistically significant DNA strand break of respectively 69% and 71% (P<0.001) as revealed by fluorometric analysis of DNA unwinding. Furthermore, the damage could be protected with DTLE (50 microL/mL, 100 microL/mL, and 200 microL/mL) on simultaneous treatment. Chromosomal aberration and micronucleus formation induced by MMC, Cr+6 and B[a]P were significantly protected (P<0.001) by DTLE with and without metabolic activation.
Conclusion: Distillate of Tulsi leaf extract possesses antioxidants contributed mainly by eugenol, luteolin and apigenin as identified by LC-MS. These active ingredients may have the protective effect against genotoxicants.