GPCR配体的QSAR建模:方法和应用实例。

A Tropsha, S X Wang
{"title":"GPCR配体的QSAR建模:方法和应用实例。","authors":"A Tropsha,&nbsp;S X Wang","doi":"10.1007/2789_2006_003","DOIUrl":null,"url":null,"abstract":"<p><p>GPCR ligands represent not only one of the major classes of current drugs but the major continuing source of novel potent pharmaceutical agents. Because 3D structures of GPCRs as determined by experimental techniques are still unavailable, ligand-based drug discovery methods remain the major computational molecular modeling approaches to the analysis of growing data sets of tested GPCR ligands. This paper presents an overview of modern Quantitative Structure Activity Relationship (QSAR) modeling. We discuss the critical issue of model validation and the strategy for applying the successfully validated QSAR models to virtual screening of available chemical databases. We present several examples of applications of validated QSAR modeling approaches to GPCR ligands. We conclude with the comments on exciting developments in the QSAR modeling of GPCR ligands that focus on the study of emerging data sets of compounds with dual or even multiple activities against two or more of GPCRs.</p>","PeriodicalId":87471,"journal":{"name":"Ernst Schering Foundation symposium proceedings","volume":" 2","pages":"49-73"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/2789_2006_003","citationCount":"15","resultStr":"{\"title\":\"QSAR modeling of GPCR ligands: methodologies and examples of applications.\",\"authors\":\"A Tropsha,&nbsp;S X Wang\",\"doi\":\"10.1007/2789_2006_003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>GPCR ligands represent not only one of the major classes of current drugs but the major continuing source of novel potent pharmaceutical agents. Because 3D structures of GPCRs as determined by experimental techniques are still unavailable, ligand-based drug discovery methods remain the major computational molecular modeling approaches to the analysis of growing data sets of tested GPCR ligands. This paper presents an overview of modern Quantitative Structure Activity Relationship (QSAR) modeling. We discuss the critical issue of model validation and the strategy for applying the successfully validated QSAR models to virtual screening of available chemical databases. We present several examples of applications of validated QSAR modeling approaches to GPCR ligands. We conclude with the comments on exciting developments in the QSAR modeling of GPCR ligands that focus on the study of emerging data sets of compounds with dual or even multiple activities against two or more of GPCRs.</p>\",\"PeriodicalId\":87471,\"journal\":{\"name\":\"Ernst Schering Foundation symposium proceedings\",\"volume\":\" 2\",\"pages\":\"49-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/2789_2006_003\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ernst Schering Foundation symposium proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/2789_2006_003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Foundation symposium proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/2789_2006_003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

GPCR配体不仅代表了当前药物的主要类别之一,而且是新型强效药物的主要持续来源。由于通过实验技术确定的GPCR的3D结构仍然不可用,基于配体的药物发现方法仍然是主要的计算分子建模方法,用于分析已测试GPCR配体的增长数据集。本文介绍了现代定量结构活动关系(QSAR)模型的研究概况。我们讨论了模型验证的关键问题,以及将成功验证的QSAR模型应用于可用化学数据库的虚拟筛选的策略。我们提出了几个应用验证的QSAR建模方法对GPCR配体的例子。最后,我们对GPCR配体的QSAR建模的令人兴奋的发展进行了评论,这些研究集中在对两种或两种以上GPCR具有双重甚至多重活性的化合物的新兴数据集的研究上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QSAR modeling of GPCR ligands: methodologies and examples of applications.

GPCR ligands represent not only one of the major classes of current drugs but the major continuing source of novel potent pharmaceutical agents. Because 3D structures of GPCRs as determined by experimental techniques are still unavailable, ligand-based drug discovery methods remain the major computational molecular modeling approaches to the analysis of growing data sets of tested GPCR ligands. This paper presents an overview of modern Quantitative Structure Activity Relationship (QSAR) modeling. We discuss the critical issue of model validation and the strategy for applying the successfully validated QSAR models to virtual screening of available chemical databases. We present several examples of applications of validated QSAR modeling approaches to GPCR ligands. We conclude with the comments on exciting developments in the QSAR modeling of GPCR ligands that focus on the study of emerging data sets of compounds with dual or even multiple activities against two or more of GPCRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New concepts for organocatalysis. Regulation of T cell differentiation and allergic responses by the E3 ubiquitin ligase itch. Approaches to discovering drugs that regulate E3 ubiquitin ligases. A tale of two giant proteases. Molecular genetics of the ubiquitin-proteasome system: lessons from yeast.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1