V型和VI型胶原用于真皮纤维结构的内聚。

T Kobayasi, T Karlsmark
{"title":"V型和VI型胶原用于真皮纤维结构的内聚。","authors":"T Kobayasi,&nbsp;T Karlsmark","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Type V and VI collagen were capable to joint each other and with type I and IV collagen, as well as mucopolysaccharides. This capability suggested that these collagens function for cohesion of fibrillar tissue components of dermis. This study demonstrated the locality of these types of collagen in dermis. Fresh specimens of normal skin were fixed in 2% paraformaldehyde in phosphate-buffered saline, overnight. Besides, in order to loosen the twist of collagen fibril, some pieces of the skin specimens were treated by citrate buffer pH 3.0, prior to fixation. The specimens were embedded in Technovit 4100 and the ultrathin sections were stained by antibody to type V collagen and followed by antibody to type I, III, IV and VI collagen. The immune reactant was visualized by gold particles for electron microscopic observation. Type V and VI collagen formed networks in dermis and jointed to collagen fibrils, elastic fibre and basal lamina. Type V collagen was found inside collagen fibrils, broad elastic fibres and junctions. Dermo-epidermal junction showed type V collagen on the dermal aspects of basal lamina and at the sites where anchoring filaments joint to basal lamina, while in junction of mesenchymal tissues, no precise structural components for type V collagen were identified. Type VI collagen wove with type V collagen in dermis and associated with mucopolysaccharides. In conclusion, type V collagen formed networks in dermal interfibrillar space and participated in assembling collagen fibrils and forming broad elastic fibres. Epithelial and mesenchymal cells cohered to the underlying dermal matrix in the junction by type V collagen. Type VI collagen interwove with type V collagen in the interfibrous space and associated with mucopolysaccharides. Types V and VI collagen preserved architecture of dermal matrix.</p>","PeriodicalId":17136,"journal":{"name":"Journal of submicroscopic cytology and pathology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type V and VI collagen for cohesion of dermal fibrillar structures.\",\"authors\":\"T Kobayasi,&nbsp;T Karlsmark\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type V and VI collagen were capable to joint each other and with type I and IV collagen, as well as mucopolysaccharides. This capability suggested that these collagens function for cohesion of fibrillar tissue components of dermis. This study demonstrated the locality of these types of collagen in dermis. Fresh specimens of normal skin were fixed in 2% paraformaldehyde in phosphate-buffered saline, overnight. Besides, in order to loosen the twist of collagen fibril, some pieces of the skin specimens were treated by citrate buffer pH 3.0, prior to fixation. The specimens were embedded in Technovit 4100 and the ultrathin sections were stained by antibody to type V collagen and followed by antibody to type I, III, IV and VI collagen. The immune reactant was visualized by gold particles for electron microscopic observation. Type V and VI collagen formed networks in dermis and jointed to collagen fibrils, elastic fibre and basal lamina. Type V collagen was found inside collagen fibrils, broad elastic fibres and junctions. Dermo-epidermal junction showed type V collagen on the dermal aspects of basal lamina and at the sites where anchoring filaments joint to basal lamina, while in junction of mesenchymal tissues, no precise structural components for type V collagen were identified. Type VI collagen wove with type V collagen in dermis and associated with mucopolysaccharides. In conclusion, type V collagen formed networks in dermal interfibrillar space and participated in assembling collagen fibrils and forming broad elastic fibres. Epithelial and mesenchymal cells cohered to the underlying dermal matrix in the junction by type V collagen. Type VI collagen interwove with type V collagen in the interfibrous space and associated with mucopolysaccharides. Types V and VI collagen preserved architecture of dermal matrix.</p>\",\"PeriodicalId\":17136,\"journal\":{\"name\":\"Journal of submicroscopic cytology and pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of submicroscopic cytology and pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of submicroscopic cytology and pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

V型和VI型胶原能够相互结合,也能与I型和IV型胶原以及粘多糖结合。这种能力表明这些胶原蛋白具有真皮纤维组织成分内聚的功能。本研究证实了这些类型的胶原蛋白在真皮中的位置。新鲜的正常皮肤标本被固定在2%多聚甲醛的磷酸盐缓冲盐水中过夜。此外,为了放松胶原纤维的扭曲,部分皮肤标本在固定前用pH 3.0的柠檬酸缓冲液处理。将标本包埋于Technovit 4100中,超薄切片分别用V型胶原抗体和I、III、IV、VI型胶原抗体进行染色。免疫反应物用金颗粒显像,电镜观察。V型和VI型胶原在真皮层形成网状,并与胶原原纤维、弹性纤维和基底层连接。V型胶原蛋白存在于胶原原纤维、宽弹性纤维和连接处。真皮-表皮交界处在基底层的真皮方面和锚定丝与基底层的连接处显示V型胶原,而在间充质组织交界处,没有确定V型胶原的精确结构成分。VI型胶原与V型胶原交织在真皮中,并与粘多糖相关。综上所述,V型胶原在真皮纤维间隙形成网状结构,参与胶原原纤维的聚集和宽弹性纤维的形成。上皮细胞和间充质细胞通过V型胶原在连接处与真皮基质结合。VI型胶原与V型胶原在纤维间隙交织,并与粘多糖相关。V型和VI型胶原保留了真皮基质的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Type V and VI collagen for cohesion of dermal fibrillar structures.

Type V and VI collagen were capable to joint each other and with type I and IV collagen, as well as mucopolysaccharides. This capability suggested that these collagens function for cohesion of fibrillar tissue components of dermis. This study demonstrated the locality of these types of collagen in dermis. Fresh specimens of normal skin were fixed in 2% paraformaldehyde in phosphate-buffered saline, overnight. Besides, in order to loosen the twist of collagen fibril, some pieces of the skin specimens were treated by citrate buffer pH 3.0, prior to fixation. The specimens were embedded in Technovit 4100 and the ultrathin sections were stained by antibody to type V collagen and followed by antibody to type I, III, IV and VI collagen. The immune reactant was visualized by gold particles for electron microscopic observation. Type V and VI collagen formed networks in dermis and jointed to collagen fibrils, elastic fibre and basal lamina. Type V collagen was found inside collagen fibrils, broad elastic fibres and junctions. Dermo-epidermal junction showed type V collagen on the dermal aspects of basal lamina and at the sites where anchoring filaments joint to basal lamina, while in junction of mesenchymal tissues, no precise structural components for type V collagen were identified. Type VI collagen wove with type V collagen in dermis and associated with mucopolysaccharides. In conclusion, type V collagen formed networks in dermal interfibrillar space and participated in assembling collagen fibrils and forming broad elastic fibres. Epithelial and mesenchymal cells cohered to the underlying dermal matrix in the junction by type V collagen. Type VI collagen interwove with type V collagen in the interfibrous space and associated with mucopolysaccharides. Types V and VI collagen preserved architecture of dermal matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. Ultrastructural analysis of a murine model of congenital hydrocephalus produced by overexpression of transforming growth factor-beta1 in the central nervous system. Type V and VI collagen for cohesion of dermal fibrillar structures. Testis of the lizard Mabuya carinata: a light microscopic and ultrastructural seasonal study. The Golgi apparatus of spinal ganglion neurons: quantitative changes with aging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1