Nam-Young Kang , Cheorl-Ho Kim , Kyoung-Sook Kim , Jeong-Heon Ko , Jai-Heon Lee , Yong-Kee Jeong , Young-Choon Lee
{"title":"人CMP-NeuAc:GM3 α2,8-唾液基转移酶(GD3合成酶)基因通过NF-κB活化在人黑色素瘤SK-MEL-2细胞中的表达","authors":"Nam-Young Kang , Cheorl-Ho Kim , Kyoung-Sook Kim , Jeong-Heon Ko , Jai-Heon Lee , Yong-Kee Jeong , Young-Choon Lee","doi":"10.1016/j.bbaexp.2007.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>To elucidate the mechanism underlying the regulation of human GD3 synthase gene expression in human melanoma SK-MEL-2 cells, we identified the promoter region of the human GD3 synthase gene. The 5′-rapid amplification of cDNA end (5′-RACE) using mRNA prepared from SK-MEL-2 cells revealed the presence of multiple transcription start sites of human GD3 synthase gene. Promoter analyses of the 5′-flanking region of the human GD3 synthase gene using luciferase gene reporter system showed the strong promoter activity in SK-MEL-2 cells. Deletion study revealed that the region as the core promoter from −<!--> <!-->1146 to −<!--> <!-->646 (A of the translational start ATG as position +<!--> <!-->1) was indispensable for endogenous expression of human GD3 synthase gene. This region lacks apparent TATA and CAAT boxes but contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-κB. Electrophoretic mobility shift assays using specific competitors, chromatin immunoprecipitation assay and site-directed mutagenesis demonstrated that only NF-κB element in this region is required for the promoter activity in SK-MEL-2 cells. These results indicate that NF-κB plays an essential role in the transcriptional activity of human GD3 synthase gene essential for GD3 synthesis in SK-MEL-2 cells.</p></div>","PeriodicalId":100161,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression","volume":"1769 11","pages":"Pages 622-630"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbaexp.2007.08.001","citationCount":"32","resultStr":"{\"title\":\"Expression of the human CMP-NeuAc:GM3 α2,8-sialyltransferase (GD3 synthase) gene through the NF-κB activation in human melanoma SK-MEL-2 cells\",\"authors\":\"Nam-Young Kang , Cheorl-Ho Kim , Kyoung-Sook Kim , Jeong-Heon Ko , Jai-Heon Lee , Yong-Kee Jeong , Young-Choon Lee\",\"doi\":\"10.1016/j.bbaexp.2007.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To elucidate the mechanism underlying the regulation of human GD3 synthase gene expression in human melanoma SK-MEL-2 cells, we identified the promoter region of the human GD3 synthase gene. The 5′-rapid amplification of cDNA end (5′-RACE) using mRNA prepared from SK-MEL-2 cells revealed the presence of multiple transcription start sites of human GD3 synthase gene. Promoter analyses of the 5′-flanking region of the human GD3 synthase gene using luciferase gene reporter system showed the strong promoter activity in SK-MEL-2 cells. Deletion study revealed that the region as the core promoter from −<!--> <!-->1146 to −<!--> <!-->646 (A of the translational start ATG as position +<!--> <!-->1) was indispensable for endogenous expression of human GD3 synthase gene. This region lacks apparent TATA and CAAT boxes but contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-κB. Electrophoretic mobility shift assays using specific competitors, chromatin immunoprecipitation assay and site-directed mutagenesis demonstrated that only NF-κB element in this region is required for the promoter activity in SK-MEL-2 cells. These results indicate that NF-κB plays an essential role in the transcriptional activity of human GD3 synthase gene essential for GD3 synthesis in SK-MEL-2 cells.</p></div>\",\"PeriodicalId\":100161,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression\",\"volume\":\"1769 11\",\"pages\":\"Pages 622-630\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bbaexp.2007.08.001\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167478107001285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167478107001285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expression of the human CMP-NeuAc:GM3 α2,8-sialyltransferase (GD3 synthase) gene through the NF-κB activation in human melanoma SK-MEL-2 cells
To elucidate the mechanism underlying the regulation of human GD3 synthase gene expression in human melanoma SK-MEL-2 cells, we identified the promoter region of the human GD3 synthase gene. The 5′-rapid amplification of cDNA end (5′-RACE) using mRNA prepared from SK-MEL-2 cells revealed the presence of multiple transcription start sites of human GD3 synthase gene. Promoter analyses of the 5′-flanking region of the human GD3 synthase gene using luciferase gene reporter system showed the strong promoter activity in SK-MEL-2 cells. Deletion study revealed that the region as the core promoter from − 1146 to − 646 (A of the translational start ATG as position + 1) was indispensable for endogenous expression of human GD3 synthase gene. This region lacks apparent TATA and CAAT boxes but contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-κB. Electrophoretic mobility shift assays using specific competitors, chromatin immunoprecipitation assay and site-directed mutagenesis demonstrated that only NF-κB element in this region is required for the promoter activity in SK-MEL-2 cells. These results indicate that NF-κB plays an essential role in the transcriptional activity of human GD3 synthase gene essential for GD3 synthesis in SK-MEL-2 cells.