在寒冷环境下的性能和能量消耗。

Alaska medicine Pub Date : 2007-01-01
Hannu Rintamäki
{"title":"在寒冷环境下的性能和能量消耗。","authors":"Hannu Rintamäki","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reviews the associations between physical performance and energy expenditure in cold environments. The basic question in cold is how to maintain adequate thermal insulation without marked cold or heat strain and with minimal impairment on physical performance. 24-hour energy expenditure is increased by 105-156 kJ when ambient temperature decreases by 1 degrees C either due to increased clothing, lowered body temperatures or environmental conditions like snow, ice or darkness. Clothing and other protective garments decrease performance due to the weight, bulkiness and friction, and by covering body areas which are important for sensory functions. Each additional kg in clothing weight increases energy costs approximately by 3% and each additional layer by 4%. Increased energy costs are associated with a decrease in physical performance: the decrease is task specific, and roughly comparable to the changes in the energy costs. The decrement in performance can be minimized by decreasing clothing weight and bulkiness as well as the friction between the clothing layers as well as the number of clothing layers. Minimal friction is important in sites where large range of movements is expected like in trouser legs and sleeves of jackets.</p>","PeriodicalId":75464,"journal":{"name":"Alaska medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and energy expenditure in cold environments.\",\"authors\":\"Hannu Rintamäki\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper reviews the associations between physical performance and energy expenditure in cold environments. The basic question in cold is how to maintain adequate thermal insulation without marked cold or heat strain and with minimal impairment on physical performance. 24-hour energy expenditure is increased by 105-156 kJ when ambient temperature decreases by 1 degrees C either due to increased clothing, lowered body temperatures or environmental conditions like snow, ice or darkness. Clothing and other protective garments decrease performance due to the weight, bulkiness and friction, and by covering body areas which are important for sensory functions. Each additional kg in clothing weight increases energy costs approximately by 3% and each additional layer by 4%. Increased energy costs are associated with a decrease in physical performance: the decrease is task specific, and roughly comparable to the changes in the energy costs. The decrement in performance can be minimized by decreasing clothing weight and bulkiness as well as the friction between the clothing layers as well as the number of clothing layers. Minimal friction is important in sites where large range of movements is expected like in trouser legs and sleeves of jackets.</p>\",\"PeriodicalId\":75464,\"journal\":{\"name\":\"Alaska medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alaska medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alaska medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了寒冷环境下身体表现与能量消耗之间的关系。在寒冷的基本问题是如何保持足够的隔热没有明显的冷或热应变和最小的损害物理性能。当环境温度因衣着增加、体温降低或下雪、结冰或黑暗等环境条件而降低1摄氏度时,24小时的能量消耗会增加105-156千焦。由于重量、体积和摩擦,以及由于覆盖了对感官功能很重要的身体部位,服装和其他防护服会降低性能。服装重量每增加一公斤,能量消耗增加约3%,每增加一层,能量消耗增加4%。能源成本的增加与物理性能的下降有关:这种下降是特定于任务的,大致与能源成本的变化相当。性能的下降可以通过减少服装重量和体积以及服装层之间的摩擦以及服装层的数量来最小化。在需要大范围运动的地方,比如裤腿和夹克袖子,最小的摩擦是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance and energy expenditure in cold environments.

This paper reviews the associations between physical performance and energy expenditure in cold environments. The basic question in cold is how to maintain adequate thermal insulation without marked cold or heat strain and with minimal impairment on physical performance. 24-hour energy expenditure is increased by 105-156 kJ when ambient temperature decreases by 1 degrees C either due to increased clothing, lowered body temperatures or environmental conditions like snow, ice or darkness. Clothing and other protective garments decrease performance due to the weight, bulkiness and friction, and by covering body areas which are important for sensory functions. Each additional kg in clothing weight increases energy costs approximately by 3% and each additional layer by 4%. Increased energy costs are associated with a decrease in physical performance: the decrease is task specific, and roughly comparable to the changes in the energy costs. The decrement in performance can be minimized by decreasing clothing weight and bulkiness as well as the friction between the clothing layers as well as the number of clothing layers. Minimal friction is important in sites where large range of movements is expected like in trouser legs and sleeves of jackets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Malignant hyperthermia. Of rock docs, frequent fliers and marijuana. Pot or not? Upbeat for 'down there' awareness. A wing & a care. Flying and doctoring: a blissful marriage for Kenai pediatrician.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1