贝叶斯整合生物先验知识,用贝叶斯网络重构基因调控网络。

Dirk Husmeier, Adriano V Werhli
{"title":"贝叶斯整合生物先验知识,用贝叶斯网络重构基因调控网络。","authors":"Dirk Husmeier,&nbsp;Adriano V Werhli","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al., where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. To complement the work of Imoto et al., we have derived and tested an MCMC scheme for sampling networks and hyperparameters simultaneously from the posterior distribution. We have assessed the viability of this approach by reconstructing the RAF pathway from cytometry protein concentrations and prior knowledge from KEGG.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":" ","pages":"85-95"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian integration of biological prior knowledge into the reconstruction of gene regulatory networks with Bayesian networks.\",\"authors\":\"Dirk Husmeier,&nbsp;Adriano V Werhli\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al., where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. To complement the work of Imoto et al., we have derived and tested an MCMC scheme for sampling networks and hyperparameters simultaneously from the posterior distribution. We have assessed the viability of this approach by reconstructing the RAF pathway from cytometry protein concentrations and prior knowledge from KEGG.</p>\",\"PeriodicalId\":72665,\"journal\":{\"name\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"85-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对生物先验知识的系统整合,已经有各种各样的尝试来改进从微阵列数据中重建基因调控网络。我们的方法基于Imoto等人的开创性工作,其中先验知识以能量函数表示,从中获得网络结构上的Gibbs分布形式的先验分布。该分布的超参数表示与相对于数据的先验知识相关的权重。为了补充Imoto等人的工作,我们从后验分布中推导并测试了同时用于采样网络和超参数的MCMC方案。我们通过利用细胞术蛋白浓度和KEGG的先验知识重建RAF通路,评估了这种方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian integration of biological prior knowledge into the reconstruction of gene regulatory networks with Bayesian networks.

There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al., where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. To complement the work of Imoto et al., we have derived and tested an MCMC scheme for sampling networks and hyperparameters simultaneously from the posterior distribution. We have assessed the viability of this approach by reconstructing the RAF pathway from cytometry protein concentrations and prior knowledge from KEGG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Gene Discovery in the Human Malaria Parasite using Nucleosome Positioning Data. Estimating support for protein-protein interaction data with applications to function prediction. On the accurate construction of consensus genetic maps. Efficient haplotype inference from pedigrees with missing data using linear systems with disjoint-set data structures. Knowledge representation and data mining for biological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1