前庭神经元和雪旺细胞之间的串音介导BDNF释放和神经元再生。

Brain cell biology Pub Date : 2006-06-01 Epub Date: 2007-10-04 DOI:10.1007/s11068-007-9011-6
Claudia Verderio, Fabio Bianco, Marie Pierre Blanchard, Matteo Bergami, Marco Canossa, Eric Scarfone, Michela Matteoli
{"title":"前庭神经元和雪旺细胞之间的串音介导BDNF释放和神经元再生。","authors":"Claudia Verderio,&nbsp;Fabio Bianco,&nbsp;Marie Pierre Blanchard,&nbsp;Matteo Bergami,&nbsp;Marco Canossa,&nbsp;Eric Scarfone,&nbsp;Michela Matteoli","doi":"10.1007/s11068-007-9011-6","DOIUrl":null,"url":null,"abstract":"<p><p>It is now well-established that an active cross-talk occurs between neurons and glial cells, in the adult as well as in the developing and regenerating nervous systems. These functional interactions not only actively modulate synaptic transmission, but also support neuronal growth and differentiation. We have investigated the possible existence of a reciprocal interaction between inner ear vestibular neurons and Schwann cells maintained in primary cultures. We show that ATP released by the extending vestibular axons elevates intracellular calcium levels within Schwann cells. Purinergic activation of the Schwann P2X(7) receptor induces the release of neurotrophin BDNF, which occurs via a regulated, tetanus-toxin sensitive, vesicular pathway. BDNF, in turn, is required by the vestibular neuron to support its own survival and growth. Given the massive release of ATP during tissue damage, cross-talk between vestibular neurons and Schwann cells could play a primary role during regeneration.</p>","PeriodicalId":72445,"journal":{"name":"Brain cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-007-9011-6","citationCount":"41","resultStr":"{\"title\":\"Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration.\",\"authors\":\"Claudia Verderio,&nbsp;Fabio Bianco,&nbsp;Marie Pierre Blanchard,&nbsp;Matteo Bergami,&nbsp;Marco Canossa,&nbsp;Eric Scarfone,&nbsp;Michela Matteoli\",\"doi\":\"10.1007/s11068-007-9011-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is now well-established that an active cross-talk occurs between neurons and glial cells, in the adult as well as in the developing and regenerating nervous systems. These functional interactions not only actively modulate synaptic transmission, but also support neuronal growth and differentiation. We have investigated the possible existence of a reciprocal interaction between inner ear vestibular neurons and Schwann cells maintained in primary cultures. We show that ATP released by the extending vestibular axons elevates intracellular calcium levels within Schwann cells. Purinergic activation of the Schwann P2X(7) receptor induces the release of neurotrophin BDNF, which occurs via a regulated, tetanus-toxin sensitive, vesicular pathway. BDNF, in turn, is required by the vestibular neuron to support its own survival and growth. Given the massive release of ATP during tissue damage, cross-talk between vestibular neurons and Schwann cells could play a primary role during regeneration.</p>\",\"PeriodicalId\":72445,\"journal\":{\"name\":\"Brain cell biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11068-007-9011-6\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain cell biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11068-007-9011-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2007/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11068-007-9011-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2007/10/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

现在已经确定,在成人以及发育和再生的神经系统中,神经元和神经胶质细胞之间存在活跃的串扰。这些功能相互作用不仅积极调节突触传递,而且支持神经元的生长和分化。我们研究了内耳前庭神经元和雪旺细胞在原代培养中相互作用的可能性。我们发现,延伸的前庭轴突释放的ATP提高了雪旺细胞内的细胞内钙水平。雪旺P2X(7)受体的嘌呤能激活诱导神经营养因子BDNF的释放,这是通过一个受调节的、破伤风毒素敏感的水泡途径发生的。反过来,前庭神经元需要BDNF来支持自身的生存和生长。考虑到组织损伤过程中ATP的大量释放,前庭神经元和雪旺细胞之间的串扰可能在再生过程中起主要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration.

It is now well-established that an active cross-talk occurs between neurons and glial cells, in the adult as well as in the developing and regenerating nervous systems. These functional interactions not only actively modulate synaptic transmission, but also support neuronal growth and differentiation. We have investigated the possible existence of a reciprocal interaction between inner ear vestibular neurons and Schwann cells maintained in primary cultures. We show that ATP released by the extending vestibular axons elevates intracellular calcium levels within Schwann cells. Purinergic activation of the Schwann P2X(7) receptor induces the release of neurotrophin BDNF, which occurs via a regulated, tetanus-toxin sensitive, vesicular pathway. BDNF, in turn, is required by the vestibular neuron to support its own survival and growth. Given the massive release of ATP during tissue damage, cross-talk between vestibular neurons and Schwann cells could play a primary role during regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Hello, goodbye. Imaging activity of neuronal populations with new long-wavelength voltage-sensitive dyes. Differences in c-jun and nNOS expression levels in motoneurons following different kinds of axonal injury in adult rats. Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1 O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1